98%
921
2 minutes
20
Alzheimer's and Parkinson's diseases are among the most prevalent neurodegenerative conditions affecting aging populations globally, presenting significant challenges in early diagnosis and management. This narrative review explores the pivotal role of advanced neuroimaging techniques in detecting and managing these diseases at early stages, potentially slowing their progression through timely interventions. Recent advancements in MRI, such as ultra-high-field systems and functional MRI, have enhanced the sensitivity for detecting subtle structural and functional changes. Additionally, the development of novel amyloid-beta tracers and other emerging modalities like optical imaging and transcranial ultrasonography have improved the diagnostic accuracy and capability of existing methods. This review highlights the clinical applications of these technologies in Alzheimer's and Parkinson's diseases, where they have shown improved diagnostic performance, enabling earlier intervention and better prognostic outcomes. Moreover, the integration of artificial intelligence (AI) and longitudinal research is emerging as a promising enhancement to refine early detection strategies further. However, this review also addresses the technical, ethical, and accessibility challenges in the field, advocating for the more extensive use of advanced imaging technologies to overcome these barriers. Finally, we emphasize the need for a holistic approach that incorporates both neurological and psychiatric perspectives, which is crucial for optimizing patient care and outcomes in the management of neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11213966 | PMC |
http://dx.doi.org/10.7759/cureus.61335 | DOI Listing |
Commun Biol
September 2025
Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.
View Article and Find Full Text PDFExp Neurol
September 2025
CNRS UMR 5536 RMSB, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; CNRS UMR 7372 CEBC, La Rochelle University, Villiers-en-Bois, France.
Introduction: The vulnerability of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, including preclinical rodent models, lacking are comprehensive longitudinal studies spanning the mouse lifespan. We previously reported early WM modifications using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi.
View Article and Find Full Text PDFNeuroimage Clin
September 2025
Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
Objectives: To examine associations between low cognitive-performance and regional-and network-level brain changes at ages 9-10 in very-preterm, moderately-preterm, and full-term children, and explore whether these alterations predict ASD/ADHD symptoms at age 12.
Methods: This longitudinal population-based study included 9-10-year-old U.S.
PLoS One
September 2025
Department of Neurology, Hospital Universitario Miguel Servet, Zaragoza, Spain.
Background: Stroke is a leading cause of death and disability globally, with frequent cognitive sequelae affecting up to 60% of stroke survivors. Despite the high prevalence of post-stroke cognitive impairment (PSCI), early detection remains underemphasized in clinical practice, with limited focus on broader neuropsychological and affective symptoms. Stroke elevates dementia risk and may act as a trigger for progressive neurodegenerative diseases.
View Article and Find Full Text PDFAm J Audiol
September 2025
Department of Special Education and Communication Disorders, University of Nebraska-Lincoln.
Purpose: This study investigated the effects of age-related hearing decline on functional networks using resting-state functional magnetic resonance imaging (rs-fMRI). The main objective of the present study was to examine resting-state functional connectivity (RSFC) and graph theory-based network efficiency metrics in 49 adults categorized by age and hearing thresholds to identify the neural mechanisms of age-related hearing decline.
Method: Forty-nine adults with self-reported normal hearing underwent pure-tone audiometry and rs-fMRI.