Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Enhancers are a class of noncoding DNA, serving as crucial regulatory elements in governing gene expression by binding to transcription factors. The identification of enhancers holds paramount importance in the field of biology. However, traditional experimental methods for enhancer identification demand substantial human and material resources. Consequently, there is a growing interest in employing computational methods for enhancer prediction. In this study, we propose a two-stage framework based on deep learning, termed CapsEnhancer, for the identification of enhancers and their strengths. CapsEnhancer utilizes chaos game representation to encode DNA sequences into unique images and employs a capsule network to extract local and global features from sequence "images". Experimental results demonstrate that CapsEnhancer achieves state-of-the-art performance in both stages. In the first and second stages, the accuracy surpasses the previous best methods by 8 and 3.5%, reaching accuracies of 94.5 and 95%, respectively. Notably, this study represents the pioneering application of computer vision methods to enhancer identification tasks. Our work not only contributes novel insights to enhancer identification but also provides a fresh perspective for other biological sequence analysis tasks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267569 | PMC |
http://dx.doi.org/10.1021/acs.jcim.4c00546 | DOI Listing |