A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Motoneuron persistent inward current contribution to increased torque responses to wide-pulse high-frequency neuromuscular electrical stimulation. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To assess the effect of a remote handgrip contraction during wide-pulse high-frequency (WPHF) neuromuscular electrical stimulation (NMES) on the magnitude of extra torque, progressive increase in torque during stimulation, and estimates of the persistent inward current (PIC) contribution to motoneuron firing in the plantar flexors.

Methods: Ten participants performed triangular shaped contractions to 20% of maximal plantar flexion torque before and after WPHF NMES with and without a handgrip contraction, and control conditions. Extra torque, the relative difference between the initial and final torque during stimulation, and sustained electromyographic (EMG) activity were assessed. High-density EMG was recorded during triangular shaped contractions to calculate ∆F, an estimate of PIC contribution to motoneuron firing, and its variation before vs after the intervention referred to as ∆F change score.

Results: While extra torque was not significantly increased with remote contraction (WPHF + remote) vs WPHF (+ 37 ± 63%, p = 0.112), sustained EMG activity was higher in this condition than WPHF (+ 3.9 ± 4.3% MVC EMG, p = 0.017). Moreover, ∆F was greater (+ 0.35 ± 0.30 Hz) with WPHF + remote than control (+ 0.03 ± 0.1 Hz, p = 0.028). A positive correlation was found between ∆F change score and extra torque in the WPHF + remote (r = 0.862, p = 0.006).

Discussion: The findings suggest that the addition of remote muscle contraction to WPHF NMES enhances the central contribution to torque production, which may be related to an increased PIC contribution to motoneuron firing. Gaining a better understanding of these mechanisms should enable NMES intervention optimization in clinical and rehabilitation settings, improving neuromuscular function in clinical populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519318PMC
http://dx.doi.org/10.1007/s00421-024-05538-8DOI Listing

Publication Analysis

Top Keywords

extra torque
16
pic contribution
12
contribution motoneuron
12
motoneuron firing
12
torque
9
persistent current
8
wide-pulse high-frequency
8
neuromuscular electrical
8
electrical stimulation
8
handgrip contraction
8

Similar Publications