A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Maximum likelihood phylogeographic inference of cell motility and cell division from spatial lineage tracing data. | LitMetric

Maximum likelihood phylogeographic inference of cell motility and cell division from spatial lineage tracing data.

Bioinformatics

Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540, USA.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: Recently developed spatial lineage tracing technologies induce somatic mutations at specific genomic loci in a population of growing cells and then measure these mutations in the sampled cells along with the physical locations of the cells. These technologies enable high-throughput studies of developmental processes over space and time. However, these applications rely on accurate reconstruction of a spatial cell lineage tree describing both past cell divisions and cell locations. Spatial lineage trees are related to phylogeographic models that have been well-studied in the phylogenetics literature. We demonstrate that standard phylogeographic models based on Brownian motion are inadequate to describe the spatial symmetric displacement (SD) of cells during cell division.

Results: We introduce a new model-the SD model for cell motility that includes symmetric displacements of daughter cells from the parental cell followed by independent diffusion of daughter cells. We show that this model more accurately describes the locations of cells in a real spatial lineage tracing of mouse embryonic stem cells. Combining the spatial SD model with an evolutionary model of DNA mutations, we obtain a phylogeographic model for spatial lineage tracing. Using this model, we devise a maximum likelihood framework-MOLLUSC (Maximum Likelihood Estimation Of Lineage and Location Using Single-Cell Spatial Lineage tracing Data)-to co-estimate time-resolved branch lengths, spatial diffusion rate, and mutation rate. On both simulated and real data, we show that MOLLUSC accurately estimates all parameters. In contrast, the Brownian motion model overestimates spatial diffusion rate in all test cases. In addition, the inclusion of spatial information improves accuracy of branch length estimation compared to sequence data alone. On real data, we show that spatial information has more signal than sequence data for branch length estimation, suggesting augmenting lineage tracing technologies with spatial information is useful to overcome the limitations of genome-editing in developmental systems.

Availability And Implementation: The python implementation of MOLLUSC is available at https://github.com/raphael-group/MOLLUSC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211844PMC
http://dx.doi.org/10.1093/bioinformatics/btae221DOI Listing

Publication Analysis

Top Keywords

spatial lineage
24
lineage tracing
24
spatial
14
maximum likelihood
12
lineage
9
cell
8
cell motility
8
tracing technologies
8
cells
8
locations cells
8

Similar Publications