Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Charcot-Marie-Tooth (CMT) disease is a neuromuscular disorder affecting the peripheral nervous system. The diagnostic yield in demyelinating CMT (CMT1) is typically ∼80%-95%, of which at least 60% is due to the PMP22 gene duplication. The remainder of CMT1 is more genetically heterogeneous. We used whole exome and whole genome sequencing data included in the GENESIS database to investigate novel causal genes and mutations in a cohort of ∼2670 individuals with CMT neuropathy. A recurrent heterozygous missense variant p.Thr1424Met in the recently described CMT gene ITPR3, encoding IP3R3 (inositol 1,4,5-trisphosphate receptor 3), was identified. This previously reported p.Thr1424Met change was present in 33 affected individuals from nine unrelated families from multiple populations, representing an unusual recurrence rate at a mutational hotspot, strengthening the gene-disease relationship (gnomAD v4 allele frequency 1.76 × 10-6). Sanger sequencing confirmed the co-segregation of the CMT phenotype with the presence of the mutation in autosomal dominant and de novo inheritance patterns, including a four-generation family with multiple affected second-degree cousins. Probands from all families presented with slow nerve conduction velocities, matching the diagnostic category of CMT1. Remarkably, we observed a uniquely variable clinical phenotype for age at onset and phenotype severity in p.Thr1424Met carrying patients, even within families. Finally, we present data supportive of a dominant-negative effect of the p.Thr1424Met mutation with associated changes in protein expression in patient-derived cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706300PMC
http://dx.doi.org/10.1093/brain/awae206DOI Listing

Publication Analysis

Top Keywords

missense variant
8
cmt
5
recurrent missense
4
variant itpr3
4
itpr3 demyelinating
4
demyelinating charcot-marie-tooth
4
charcot-marie-tooth variable
4
variable severity
4
severity charcot-marie-tooth
4
charcot-marie-tooth cmt
4

Similar Publications

Introduction: Genetic analysis is essential for diagnosing, treating, and predicting complications in neonatal diabetes mellitus (NDM) but is unavailable in some regions. Sulfonylureas are effective for NDM caused by KCNJ11 or ABCC8 mutations, which are among the most common genetic causes, therefore they are often given before genetic testing. Unfortunately, in certain ethnicities, this mutation rarely occurs.

View Article and Find Full Text PDF

Background: This study aims to gain further insights into the characteristics of the rare subtype of acute myeloid leukemia (AML) with BCR∷ABL by analyzing laboratory detection results of various gene mutations, such as NPM1.

Methods: Laboratory detection results of multiple gene missense mutations, including NPM1, were analyzed in a case of primary AML with BCR∷ABL.

Results: The patient exhibited morphological features of acute leukemia in the bone marrow.

View Article and Find Full Text PDF

Novel Grm6 Variant in a no b-wave (nob) Mouse Model: Phenotype Characterization and Gene Therapy.

Invest Ophthalmol Vis Sci

September 2025

Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, New York, United States.

Purpose: To characterize a no b-wave (nob) mouse model of congenital stationary night blindness (CSNB) caused by a Grm6 variant that disrupts photoreceptor-to-bipolar cell signaling. Additionally, we aim to evaluate the efficacy of gene therapy in restoring visual function.

Methods: The nob mouse was generated through selective breeding to regenerate the nob phenotype.

View Article and Find Full Text PDF

Purpose: To define the genetic architecture of foveal morphology and explore its relevance to foveal hypoplasia (FH), a hallmark of developmental macular disorders.

Methods: We applied deep-learning algorithms to quantify foveal pit depth from central optical coherence tomography (OCT) B-scans in 61,269 UK Biobank participants. A genome-wide association study (GWAS) was conducted using REGENIE, adjusting for age, sex, height, and ancestry.

View Article and Find Full Text PDF

Rationale: Weaver syndrome is a rare congenital overgrowth disorder characterized by a wide spectrum of clinical manifestations that often overlap with other overgrowth syndromes. It is primarily caused by pathogenic variants in the Enhancer of Zeste Homolog 2 (EZH2) gene on chromosome 7q36.1.

View Article and Find Full Text PDF