Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Peptide self-assemblies could leverage their specificity, stability, biocompatibility, and electrochemical activity to create functionalized interfaces for molecular sensing and detection. However, the dynamics within these interfaces are complex, with competing forces, including those maintaining peptide structures, recognizing analytes, and facilitating signal transmission. Such competition could lead to nonspecific interference, compromising the detection sensitivity and accuracy. In this study, a series of peptides with precise structures and controllable electron transfer capabilities were designed. Through examining their stacking patterns, the interplay between the peptides' hierarchical structures, their ability to recognize targets, and their conductivity were clarified. Among these, the EP peptide assembly was identified for its ability to form controllable electronic tunnels facilitated by π-stacking induced β-sheets. EP could enhance the long-range conductivity, minimize nonspecific interference, and exhibit targeted recognition capabilities. Based on EP, an electrochemical sensing interface toward the disease marker PD-L1 (programmed cell death ligand 1) was developed, suitable for both whole blood assay and companion diagnosis. It opens a new avenue for crafting electrochemical detection interfaces with specificity, sensitivity, and compatibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c02273 | DOI Listing |