Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Electrochemical CO reduction reaction (eCORR) over Cu-based catalysts is a promising approach for efficiently converting CO into value-added chemicals and alternative fuels. However, achieving controllable product selectivity from eCORR remains challenging because of the difficulty in controlling the oxidation states of Cu against robust structural reconstructions during the eCORR. Herein, we report a novel strategy for tuning the oxidation states of Cu species and achieving eCORR product selectivity by adjusting the Cu content in CuMgAl-layered double hydroxide (LDH)-based catalysts. In this strategy, the highly stable Cu species in low-Cu-containing LDHs facilitated the strong adsorption of *CO intermediates and further hydrogenation into CH. Conversely, the mixed Cu/Cu species in high-Cu-containing LDHs derived from the electroreduction during the eCORR accelerated C-C coupling reactions. This strategy to regulate Cu oxidation states using LDH nanostructures with low and high Cu molar ratios produced an excellent eCORR performance for CH and C products, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c02233 | DOI Listing |