A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cadmium Exposure: Mechanisms and Pathways of Toxicity and Implications for Human Health. | LitMetric

Cadmium Exposure: Mechanisms and Pathways of Toxicity and Implications for Human Health.

Toxics

Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cadmium (Cd), a prevalent environmental contaminant, exerts widespread toxic effects on human health through various biochemical and molecular mechanisms. This review encapsulates the primary pathways through which Cd inflicts damage, including oxidative stress induction, disruption of Ca signaling, interference with cellular signaling pathways, and epigenetic modifications. By detailing the absorption, distribution, metabolism, and excretion (ADME) of Cd, alongside its interactions with cellular components such as mitochondria and DNA, this paper highlights the extensive damage caused by Cd at the cellular and tissue levels. The role of Cd in inducing oxidative stress-a pivotal mechanism behind its toxicity-is discussed with emphasis on how it disrupts the balance between oxidants and antioxidants, leading to cellular damage and apoptosis. Additionally, the review covers Cd's impact on signaling pathways like Mitogen-Activated Protein Kinase (MAPK), Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), and Tumor Protein 53 (p53) pathways, illustrating how its interference with these pathways contributes to pathological conditions and carcinogenesis. The epigenetic effects of Cd, including DNA methylation and histone modifications, are also explored to explain its long-term impact on gene expression and disease manifestation. This comprehensive analysis not only elucidates the mechanisms of Cd toxicity but also underscores the critical need for enhanced strategies to mitigate its public health implications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209188PMC
http://dx.doi.org/10.3390/toxics12060388DOI Listing

Publication Analysis

Top Keywords

human health
8
signaling pathways
8
pathways
6
cadmium exposure
4
exposure mechanisms
4
mechanisms pathways
4
pathways toxicity
4
toxicity implications
4
implications human
4
health cadmium
4

Similar Publications