Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Large-area oriented ZnO nanoarrays (including nanowire, nanorod, and nanotube) on ITO glass substrates are synthesized via the simple hydrothermal, electrodeposition, and electrochemical etching approach. The morphology of ZnO nanoarrays is controlled by adjusting the reaction temperature, reaction time, and current density. The scanning and transmission electron microscopy (SEM and TEM) results indicate the successful preparation of large-area oriented ZnO nanoarrays with different types, and the energy-dispersive X-microanalysis spectrum (EDS) and X-ray diffraction (XRD) results confirm that the composition of the obtained nanoarrays is ZnO. More importantly, the as-prepared ZnO nanotube arrays are observed with about a 40% increase in ultraviolet absorption intensity compared to the ZnO nanowire/nanorod arrays, due to having larger specific surface areas. The as-prepared different types of ZnO nanoarrays have great potential for applications in low-cost and high-performance optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11206485 | PMC |
http://dx.doi.org/10.3390/nano14121028 | DOI Listing |