98%
921
2 minutes
20
The aging population and increasing incidence of trauma among younger age groups have heightened the increasing demand for reliable implant materials. Effective implant materials must demonstrate rapid osseointegration and strong antibacterial properties to ensure optimal patient outcomes and decrease the chance of implant rejection. This study aims to enhance the bone-implant interface by utilizing 45S5 bioglass modified with various concentrations of FeO as a coating material. The effect of the insertion of FeO into the bioglass structure was studied using Raman spectroscopy which shows that with the increase in FeO concentration, new vibration bands associated with Fe-related structural units appeared within the sample. The bioactivity of the prepared glasses was evaluated using immersion tests in simulated body fluid, revealing the formation of a calcium phosphate-rich layer within 24 h on the samples, indicating their potential for enhanced tissue integration. However, the sample modified with 8 mol% of FeO showed low reactivity, developing a calcium phosphate-rich layer within 96 h. All the bioglasses showed antibacterial activity against the and bacteria. The modified bioglass did not present significant antibacterial properties compared to the bioglass base.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11201570 | PMC |
http://dx.doi.org/10.3390/biomimetics9060325 | DOI Listing |
Macromol Biosci
September 2025
IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, Barcelona, Spain.
This study investigates a multifunctional hydrogel system integrating carboxymethyl cellulose (CMC) in a 3D-printed limonene (LIM) scaffold coated with poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS). The system allows to enhance wound healing, prevent infections, and monitor the healing progress. CMC is crosslinked with citric acid (CA) to form the hydrogel matrix (CMC-CA), while the 3D-printed limonene (LIM) scaffold is embedded within the hydrogel to provide mechanical support.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.
Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.
View Article and Find Full Text PDFArch Microbiol
September 2025
Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Salmonella enterica serovar Typhi, the etiological agent of Typhoid fever, remains a critical public health concern associated with high morbidity in many developing countries. The widespread emergence of multidrug-resistant (MDR) Salmonella Typhi strains against the fluoroquinolone group of antibiotics, particularly ciprofloxacin, poses a significant global therapeutic challenge with underlying resistance due to mutations in quinolone-resistance determining region (QRDR) of gyrA gene, encoding DNA gyrase subunit A (GyrA). In pursuit of alternative therapeutic candidates, the present study was designed to evaluate ciprofloxacin analogues against prevalent GyrA mutations (S83F, D87G, and D87N) to overcome fluoroquinolone resistance through machine learning (ML)-based approach.
View Article and Find Full Text PDFClin Exp Dent Res
October 2025
Department of Dentistry, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil.
Objective: Through a scoping review, this study meticulously mapped and characterized these nanostructured clays used to release antibacterial active compounds from direct restorative dental materials.
Material And Methods: The systematic approach involved searches in the PubMed/MEDLINE, Lilacs, Web of Science, Scopus, ScienceDirect, and Embase databases. Two independent and calibrated researchers (kappa: 0.
Clin Cosmet Investig Dent
August 2025
Clinical Science Department, Ajman University, Ajman, United Arab Emirates.
Aim: The aim of this study was to determine the impact of different nanoparticle concentrations with endodontic bioceramic sealer. It was assessed the combination by analyzing the correlation between the degree of conversion (DC) and antibacterial efficacy. And assess the penetration depth into the lateral canals.
View Article and Find Full Text PDF