Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recent emerging studies have demonstrated numerous critical roles of exosomes in cell-to-cell signaling. We investigated exosomes in the aqueous humor of glaucoma patients and controls and compared their characteristics with other biomarkers such as cytokines. Glaucoma patients exhibited higher exosome particle counts and smaller sizes compared to controls. Higher exosome density was correlated with more severe visual field loss. Conversely, concentrations of aqueous humor cytokines, particularly PD-L1, were primarily associated with intraocular pressure, and none of the cytokines showed a significant association with visual field damage. This may reflect the characteristics of exosomes, which are advantageous for crossing various biological barriers. Exosomes may contain more information about glaucoma functional damage occurring in the retina or optic nerve head. This highlights the potential importance of exosomes as signaling mediators distinct from other existing molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11202053 | PMC |
http://dx.doi.org/10.3390/cells13121030 | DOI Listing |