98%
921
2 minutes
20
A new tetranuclear copper(II) complex [Cu4L2(N3)2(CH3OH)2](NO3)2·4CH3OH (1) and a new trinuclear zinc(II) complex [Zn3L2(CH3COO)2] (2) have been prepared from the bis-Schiff base N,N'-bis(4-bromosalicylidene)-1,3-propanediamine (H2L) with copper nitrate and zinc acetate, respectively, in the presence of sodium azide. The complexes were characterized by elemental analysis, IR and UV-Vis spectroscopy. Molecular structures of both complexes were confirmed by single crystal X-ray determination. The Cu(II) atoms in complex 1 are bridged by phenolate oxygen atoms and end-on azide ligands. The Zn(II) atoms in complex 2 are bridged by phenolate oxygen atoms and acetate ligands. The Cu(II) atoms in complex 1 are in square planar and square pyramidal coordination. The Zn(II) atoms in complex 2 are in square pyramidal and octahedral coordination. The Schiff base ligand coordinates to the metal atoms through two phenolate O and two imino N atoms. The biological assay reveals that the copper(II) complex has effective urease inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17344/acsi.2024.8640 | DOI Listing |
J Phys Chem A
September 2025
Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore, Bengaluru560012, India.
The microwave spectrum of the complex formed between 1-fluoronaphthalene and HO has been recorded using a chirped pulse Fourier transform microwave spectrometer within the frequency range of 2.0 to 8.0 GHz, with neon as the carrier gas.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.
The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Cytogenetics and Molecular Genetics Lab, Pathology Unit, Medical Division (BARC Hospital), Bhabha Atomic Research Centre, Anushakti Nagar, Mumbai, India.
Background: Hearing loss (HL) is one of the most common congenital anomalies and is a complex etiologically diverse condition. Molecular genetic characterization of HL remains challenging owing to the high genetic heterogeneity. This study aimed to screen for potential disease-causing genetic variations in a cohort of Indian patients with congenital bilateral severe-to-profound sensorineural HL.
View Article and Find Full Text PDFNanoscale Horiz
September 2025
School of Biomedical Engineering, University of Sydney, Darlington 2008, New South Wales, Australia.
Entropy-driven drying-mediated self-assembly of plasmonic nanocrystals (termed "plasmonic atoms") has emerged as a general strategy for fabricating plasmene nanosheets from a wide range of monodisperse nanocrystals. However, extending this approach to binary systems remains challenging due to the complex nanoscale interactions between dissimilar nanocrystal shapes. Here, we introduce a combined enthalpy- and entropy-driven strategy to achieve an orderly mixed two-dimensional (2D) binary nanoassemblies from complementary reacting polymer-ligated nanocrystals.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
Motivated by copper's essential role in biology and its wide range of applications in catalytic and synthetic chemistry, this work aims to understand the effect of heteroatom substitution on the overall stability and reactivity of biomimetic Cu(II)-alkylperoxo complexes. In particular, we designed a series of tetracoordinated ligand frameworks based on iso-BPMEN = (,-bis(2-pyridylmethyl)-','-dimethylethane-1,2-diamine) with varying the primary coordination sphere using different donor atoms (N, O, or S) bound to Cu(II). The copper(II) complexes bearing iso-BPMEN and their modified heteroatom-substituted ligands were synthesized and structurally characterized.
View Article and Find Full Text PDF