A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Knowledge Graph Neural Network With Spatial-Aware Capsule for Drug-Drug Interaction Prediction. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Uncovering novel drug-drug interactions (DDIs) plays a pivotal role in advancing drug development and improving clinical treatment. The outstanding effectiveness of graph neural networks (GNNs) has garnered significant interest in the field of DDI prediction. Consequently, there has been a notable surge in the development of network-based computational approaches for predicting DDIs. However, current approaches face limitations in capturing the spatial relationships between neighboring nodes and their higher-level features during the aggregation of neighbor representations. To address this issue, this study introduces a novel model, KGCNN, designed to comprehensively tackle DDI prediction tasks by considering spatial relationships between molecules within the biomedical knowledge graph (BKG). KGCNN is built upon a message-passing GNN framework, consisting of propagation and aggregation. In the context of the BKG, KGCNN governs the propagation of information based on semantic relationships, which determine the flow and exchange of information between different molecules. In contrast to traditional linear aggregators, KGCNN introduces a spatial-aware capsule aggregator, which effectively captures the spatial relationships among neighboring molecules and their higher-level features within the graph structure. The ultimate goal is to leverage these learned drug representations to predict potential DDIs. To evaluate the effectiveness of KGCNN, it undergoes testing on two datasets. Extensive experimental results demonstrate its superiority in DDI predictions and quantified performance.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3419015DOI Listing

Publication Analysis

Top Keywords

spatial relationships
12
knowledge graph
8
graph neural
8
spatial-aware capsule
8
ddi prediction
8
relationships neighboring
8
higher-level features
8
bkg kgcnn
8
kgcnn
5
neural network
4

Similar Publications