98%
921
2 minutes
20
facsimiles of biomolecular condensates are formed by different types of intrinsically disordered proteins including prion-like low complexity domains (PLCDs). PLCD condensates are viscoelastic materials defined by time-dependent, sequence-specific complex shear moduli. Here, we show that viscoelastic moduli can be computed directly using a generalization of the Rouse model and information regarding intra- and inter-chain contacts that is extracted from equilibrium configurations of lattice-based Metropolis Monte Carlo (MMC) simulations. The key ingredient of the generalized Rouse model is the Zimm matrix that we compute from equilibrium MMC simulations. We compute two flavors of Zimm matrices, one referred to as the single-chain model that accounts only for intra-chain contacts, and the other referred to as a collective model, that accounts for inter-chain interactions. The single-chain model systematically overestimates the storage and loss moduli, whereas the collective model reproduces the measured moduli with greater fidelity. However, in the long time, low-frequency domain, a mixture of the two models proves to be most accurate. In line with the theory of Rouse, we find that a continuous distribution of relaxation times exists in condensates. The single crossover frequency between dominantly elastic versus dominantly viscous behaviors is influenced by the totality of the relaxation modes. Hence, our analysis suggests that viscoelastic fluid-like condensates are best described as generalized Maxwell fluids. Finally, we show that the complex shear moduli can be used to solve an inverse problem to obtain distributions of relaxation times that underlie the dynamics within condensates.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11195242 | PMC |
http://dx.doi.org/10.1101/2024.06.11.598543 | DOI Listing |
Langmuir
September 2025
School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, People's Republic of China.
The study of the self-assembly of surfactants in aqueous solutions, though a traditional field, remains fascinating and full of novelty. In this article, the anionic perfluorodecanoic acid surfactant (PFA) is separately complexed with three hydroxyalkylamines (monoethanolamine (MEA), diethylamine (DEA), and triethanolamine (TEA)) in aqueous solutions. The transformation of aggregate morphologies from spherical unilamellar to nanotubes and then to spherical bilamellar is observed at room temperature, which is confirmed by cryo-transmission electron microscopy (cryo-TEM).
View Article and Find Full Text PDFBiomacromolecules
September 2025
Division of Pharmacy and Optometry, Manchester Institute of Biotechnology, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
This study investigates how hydrophobic and hydrophilic modifications at the C-terminus of the base peptide, KFEFEFKFK (KbpK), affect the hydrogel macroscopic properties. By the incorporation of phenylalanine (F, hydrophobic) and lysine (K, hydrophilic) residues, four variants, KbpK-K, KbpK-F, KbpK-KF, and KbpK-FK, were designed and evaluated. pH-concentration phase diagrams and Fourier transform infrared confirmed clear links showing how peptide hydrophobicity and charge influence β-sheet formation and macroscopic phase behavior.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Department of Physics, Universidade Federal de Vicosa, Av. P. H. Rolds, s/n, Vicosa, Vicosa, 36570-000, BRAZIL.
Recent works indicate that heterogeneous response and non-Markovianity may yield recognizable hallmarks in the microrheology of semisolid viscoelastic materials. Here we perform numerical simulations using a non-Markovian overdamped Langevin approach to explore how the microrheology experienced by probe particles immersed in an effective semisolid material can be influenced by its micro-heterogeneities. Our results show that, besides affecting the mean squared displacement, the time-dependent diffusion coefficient, and the shear moduli, the micro-heterogeneities lead to displacement distributions that deviate from the usual Gaussian behavior.
View Article and Find Full Text PDFFoods
August 2025
Department of Chemical Engineering, Universidade de Santiago de Compostela, rúa Lope Gómez de Marzoa, s/n, 15782 Santiago de Compostela, Spain.
Given health concerns, oleogels are promising substitutes for saturated fats in food products. An emulsion-templated method was used, employing rapeseed oil and hydroxypropyl methylcellulose (HPMC) as the structuring agent, to produce oleogels. Oil-in-water emulsions (50:50 /) were prepared with three HPMC concentrations (1.
View Article and Find Full Text PDFJ Food Sci
September 2025
Institute of Light Industry and Food Engineering, Guangxi University, Nanning, China.
This study aimed to investigate the effects of different concentrations of Moringa oleifera seed protein (MOSP) on the water holding capacity (WHC), rheological properties (viscoelasticity), textural properties, microstructure, and in vitro digestibility of japonica rice starch (JRS), indica rice starch (IRS), and glutinous rice starch (GRS). The results showed that MOSP was randomly dispersed in the starch-based gel network structure, and addition of MOSP enhanced the WHC, textural properties, and rheological properties of the gel, so as to obtain a more solid gel network structure. Both moduli (G' and G″) of MOSP-JRS gel reached up to 1.
View Article and Find Full Text PDF