Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nitrogen permease regulator-like 2 (NPRL2/TUSC4) is known to exert both tumor-suppressing and oncogenic effects in different types of cancers, suggesting that its actions are context dependent. Here, we delineated the molecular and functional effects of NPRL2 in malignantly transformed bronchial epithelial cells. To do so, we depleted NPRL2 in oncogenic HRas-transduced and malignantly transformed human bronchial epithelial (BEAS2B), Ras-AI-T2 cells. Intriguingly, depletion of NPRL2 in these cells induced activation of mTORC1 downstream signaling, inhibited autophagy, and impaired Ras-AI-T2 cell proliferation both in vitro and in vivo. These results suggest that NPRL2 is required for oncogenic HRas-induced cell transformation. Depletion of NPRL2 increased levels of the DNA damage marker γH2AX, the cell cycle inhibitors p21 and p27, and the apoptosis marker cleaved-PARP. These NPRL2-depleted cells first accumulated at G1 and G2, and later exhibited signs of mitotic catastrophe, which implied that NPRL2 depletion may be detrimental to oncogenic HRas-transformed cells. Additionally, NPRL2 depletion reduced heat shock factor 1/heat shock element- and NRF2/antioxidant response element-directed luciferase reporter activities in Ras-AI-T2 cells, indicating that NPRL2 depletion led to the suppression of two key cytoprotective processes in oncogenic HRas-transformed cells. Overall, our data suggest that oncogenic HRas-transduced and malignantly transformed cells may depend on NPRL2 for survival and proliferation, and depletion of NPRL2 also induces a stressed state in these cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11197203PMC
http://dx.doi.org/10.1186/s13008-024-00126-wDOI Listing

Publication Analysis

Top Keywords

bronchial epithelial
12
malignantly transformed
12
depletion nprl2
12
nprl2 depletion
12
nprl2
11
cells
10
nprl2 required
8
epithelial cells
8
oncogenic hras-transduced
8
hras-transduced malignantly
8

Similar Publications

This study investigates the cytotoxic and biochemical effects of PEGylated graphene oxide sol-gel (SJ-go) nanoparticles, curcumin, and quercetin on BEAS-2B human bronchial epithelial. In this work, a new graphene oxide nanocomposite (SJ-go) was produced using the sol-gel method through a one-step reaction. These hybrid sol-gel systems include graphite, triethyl orthosilicate (TEOS), and polyethylene glycol (PEG) having a molecular weight of 8000 g/mol.

View Article and Find Full Text PDF

Background: While autophagy is pivotal in antimicrobial defense, its regulatory role in Talaromyces marneffei (TM) infected bronchial epithelium remains elusive.

Objective: To elucidate the impact of TM infection on autophagy in bronchial epithelial cells and to identify the key molecular regulators involved in this process.

Methods: Primary computational screening identified core autophagy modulators.

View Article and Find Full Text PDF

Introduction: Cystic fibrosis (CF) is a monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a Cl/HCO ion channel located at the apical plasma membrane (PM) of epithelial cells. CFTR dysfunction disrupts epithelial barrier integrity, drives progressive airway remodelling and has been associated with epithelial-to-mesenchymal transition (EMT), a process in which cells lose epithelial properties and acquire mesenchymal characteristics. We previously demonstrated that mutant CFTR directly drives partial EMT, independently of secondary events such as bacterial infection or inflammation.

View Article and Find Full Text PDF

FAM46B inhibits CS-induced oxidative stress and ferroptosis in bronchial epithelial cells via KLHL24.

Int Immunopharmacol

September 2025

Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China. Electronic address:

Background: Chronic obstructive pulmonary disease (COPD), mainly caused by cigarette smoke (CS), is a global health concern. Ferroptosis is recognized as a key driver of COPD progression, yet its underlying mechanisms are unclear. This study aimed to identify crucial genes involved in COPD and elucidate their functional roles in COPD via bioinformatics and experiments.

View Article and Find Full Text PDF

3,6'-Disinapoyl sucrose modulates GALE-mediated metabolic reprogramming to alleviate asthmatic airway inflammation.

Int Immunopharmacol

September 2025

Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji 133002, PR China; Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji 133002, PR China; Key Laboratory of Natural Medicines of the Changbai Mountain, M

Background: Asthma is a heterogeneous disease characterized by chronic airway inflammation and metabolic dysregulation. Recent studies highlight the role of glycolysis and oxidative phosphorylation (OXPHOS) imbalance in asthma pathogenesis, yet the underlying molecular mechanisms remain unclear. UDP-galactose-4-epimerase (GALE), a key enzyme in galactose metabolism, has not been previously explored in asthma.

View Article and Find Full Text PDF