Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigate experimentally the collective motion of polar vibrated disks in an annular geometry, varying both the packing fraction and the amplitude of the angular noise. For low enough noise and large enough density, an overall collective motion takes place along the tangential direction. The spatial organization of the flow reveals the presence of polar bands of large density, as expected from the commonly accepted picture of the transition to collective motion in systems of aligning polar active particles. However, in our case, the low density phase is also polar, consistent with what is observed when jamming takes place in a very high density flock. Interestingly, while in that case the particles in the high density bands are arrested, resulting in an upstream propagation at a constant speed, in our case the bands travel downstream with a density-dependent speed. We demonstrate from local measurements of the packing fraction, alignment, and flow speeds that the bands observed here result both from a polar ordering process and a motility induced phase separation mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.109.054610DOI Listing

Publication Analysis

Top Keywords

collective motion
12
polar ordering
8
packing fraction
8
large density
8
takes place
8
high density
8
polar
7
density
5
traveling fronts
4
fronts vibrated
4

Similar Publications

Coarse-grained (CG) molecular dynamics simulations extend the length and time scales of atomistic simulations by replacing groups of correlated atoms with CG beads. Machine-learned coarse-graining (MLCG) has recently emerged as a promising approach to construct highly accurate force fields for CG molecular dynamics. However, the calibration of MLCG force fields typically hinges on force matching, which demands extensive reference atomistic trajectories with corresponding force labels.

View Article and Find Full Text PDF

Shear-stress-induced swirling flow in biological systems.

Biosystems

September 2025

Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:

Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.

View Article and Find Full Text PDF

Interactions Between Active Matters and Endogenous Fields.

Adv Mater

September 2025

Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri i Reixac, 10-12, Barcelona, 08028, Spain.

Active matter, encompassing both natural and artificial systems, utilizes environmental energy to sustain autonomous motion, exhibiting unique non-equilibrium behaviors. Artificial active matter (AAM), such as nano/micromotors, holds transformative potential in precision medicine by enhancing drug delivery and enabling targeted therapeutic interventions. Under the demand for increasing intelligence in AAM, controlling their non-equilibrium processes within complex in vivo environments presents significant challenges.

View Article and Find Full Text PDF

Collective behavior of "flexicles".

Proc Natl Acad Sci U S A

September 2025

Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109.

In recent years the functionality of synthetic active microparticles has edged even closer to that of their biological counterparts. However, we still lack the understanding needed to recreate at the microscale key features of autonomous behavior exhibited by microorganisms or swarms of macroscopic robots. In this study, we propose a model for a three-dimensional deformable cellular composite particle consisting of self-propelled rod-shaped colloids confined within a flexible vesicle-representing a superstructure we call a "flexicle" that couples particle deformation to the internal dynamics of the internal active components.

View Article and Find Full Text PDF

Introduction: The use of controlled-expansion transjugular intrahepatic portosystemic shunt (CX-TIPS) effectively controls portal hypertension (PH)-related complications while reducing risks related to fully expanded stents. We evaluated the effectiveness of CX-TIPS in a large Viennese patient cohort.

Method: We assessed the number of patients evaluated for CX-TIPS placement by interdisciplinary discussion at the Medical University of Vienna and included all patients from the prospective AUTIPS registry undergoing CX-TIPS placement between June 2018 - December 2024.

View Article and Find Full Text PDF