A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Thermodynamic Response and Neutral Excitations in Integer and Fractional Quantum Anomalous Hall States Emerging from Correlated Flat Bands. | LitMetric

Thermodynamic Response and Neutral Excitations in Integer and Fractional Quantum Anomalous Hall States Emerging from Correlated Flat Bands.

Phys Rev Lett

Department of Physics and HKU-UCAS Joint Institute of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.

Published: June 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Integer and fractional Chern insulators have been extensively explored in correlated flat band models. Recently, the prediction and experimental observation of fractional quantum anomalous Hall (FQAH) states with spontaneous time-reversal symmetry breaking have garnered attention. While the thermodynamics of integer quantum anomalous Hall (IQAH) states have been systematically studied, our theoretical knowledge on thermodynamic properties of FQAH states has been severely limited. Here, we delve into the general thermodynamic response and collective excitations of both IQAH and FQAH states within the paradigmatic flat Chern-band model with remote band considered. Our key findings include (i) in both ν=1 IQAH and ν=1/3 FQAH states, even without spin fluctuations, the charge-neutral collective excitations would lower the onset temperature of these topological states, to a value significantly smaller than the charge gap, due to band mixing and multiparticle scattering; (ii) by employing large-scale thermodynamic simulations in FQAH states in the presence of strong interband mixing between C=±1 bands, we find that the lowest collective excitations manifest as the zero-momentum excitons in the IQAH state, whereas in the FQAH state, they take the form of magnetorotons with finite momentum; (iii) the unique charge oscillations in FQAH states are exhibited with distinct experimental signatures, which we propose to detect in future experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.236502DOI Listing

Publication Analysis

Top Keywords

fqah states
24
quantum anomalous
12
anomalous hall
12
collective excitations
12
states
9
thermodynamic response
8
integer fractional
8
fractional quantum
8
correlated flat
8
fqah
7

Similar Publications