Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The stable operation of the CO reduction reaction (CORR) in membrane electrode assembly (MEA) electrolyzers is known to be hindered by the accumulation of bicarbonate salt, which are derived from alkali metal cations in anolytes, on the cathode side. In this study, we conducted a quantitative evaluation of the correlation between the CORR activity and the transported alkali metal cations in MEA electrolyzers. As a result, although the presence of transported alkali metal cations on the cathode surface significantly contributes to the generation of C compounds, the rate of K ion transport did not match the selectivity of C, suggesting that a continuous supply of high amount of K to the cathode surface is not required for C formation. Based on these findings, we achieved a faradaic efficiency (FE) and a partial current density for C of 77 % and 230 mA cm, respectively, even after switching the anode solution from 0.1 M KHCO to a dilute K solution (<7 mM). These values were almost identical to those when 0.1 M KHCO was continuously supplied. Based on this insight, we successfully improved the durability of the system against salt precipitation by intermittently supplying concentrated KHCO, compared with the continuous supply.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587695PMC
http://dx.doi.org/10.1002/cssc.202401013DOI Listing

Publication Analysis

Top Keywords

alkali metal
16
metal cations
16
cathode surface
12
cations cathode
8
membrane electrode
8
electrode assembly
8
mea electrolyzers
8
transported alkali
8
quantitative analysis
4
analysis manipulation
4

Similar Publications

Background: Malaria is one of the most infectious diseases, and electrolyte imbalance and mineral disturbances are common clinical manifestations. This study aimed to explore the effect of malaria on biochemical parameters in Sudanese patients with severe falciparum malaria.

Methods: A case-control study was conducted in the clinical laboratory of the Kosti Teaching Hospital between August 2022 and January 2023.

View Article and Find Full Text PDF

Hyperkalemia is a common and serious complication in dialysis patients, with increased incidence and severity over time. Newer potassium binders, patiromer and sodium zirconium cyclosilicate (SZC), offer improved tolerability compared to older agents. This meta-analysis aims to evaluate the efficacy and safety of these newer binders in dialysis patients.

View Article and Find Full Text PDF

Mechanistic insights into neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters: a DLPNO-CCSD(T) study.

Phys Chem Chem Phys

September 2025

Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.

Over the past few years, alkali and alkaline earth metals have emerged as alternative catalysts to transition metal organometallics to catalyze the hydroboration of unsaturated compounds. A highly selective and cost-effective lithium-catalyzed method for the synthesis of an organoborane has been established based on the addition of a B-H bond to an unsaturated bond (polarized or unpolarized) using pinacolborane (HBPin). In the present work, the neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters has been investigated using high-level DLPNO-CCSD(T) calculations to unravel the mechanistic pathways and substrate-dependent reactivity.

View Article and Find Full Text PDF

Mechanisms of Enhanced Efficiency and Stability in Perovskite Luminescence via Rb Interstitial Doping.

J Phys Chem Lett

September 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.

Metal halide perovskites have garnered significant attention due to their exceptional photoelectric properties. The alkali metal doping strategy has been demonstrated to effectively modulate grain size, control crystallization kinetics, and adjust band gap characteristics in perovskite. This study employs the first-principles calculations to reveal that the selection of alkali metal species and their corresponding doping methodologies exert markedly distinct influences on both the electronic properties and ion migration kinetics of CsPbBr perovskites.

View Article and Find Full Text PDF

Cesium ions (Cs) are notable radioactive contaminants hazardous to humans and the environment. Among various remediation methods, adsorption is a practical way to remove Cs from water, and Prussian blue (PB) is well-known as an efficient Cs adsorbent. Although various PB derivatives have been proposed to treat Cs-contaminated water, soil remediation is still challenging due to the limited mobility of pollutants in soil.

View Article and Find Full Text PDF