Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Functional magnetic resonance imaging (fMRI) is a central tool for investigating human brain function, organization and disease. Here, we show that fMRI-based estimates of functional brain connectivity artifactually inflate at spatially heterogeneous rates during resting-state and task-based scans. This produces false positive connection strength changes and spatial distortion of brain connectivity maps. We demonstrate that this artefact is driven by temporal inflation of the non-neuronal, systemic low-frequency oscillation (sLFO) blood flow signal during fMRI scanning and is not addressed by standard denoising procedures. We provide evidence that sLFO inflation reflects perturbations in cerebral blood flow by respiration and heart rate changes that accompany diminishing arousal during scanning, although the mechanisms of this pathway are uncertain. Finally, we show that adding a specialized sLFO denoising procedure to fMRI processing pipelines mitigates the artifactual inflation of functional connectivity, enhancing the validity and within-scan reliability of fMRI findings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526723PMC
http://dx.doi.org/10.1038/s41562-024-01908-6DOI Listing

Publication Analysis

Top Keywords

functional connectivity
8
connectivity artifactually
8
functional magnetic
8
magnetic resonance
8
resonance imaging
8
brain connectivity
8
blood flow
8
brain-wide functional
4
connectivity
4
artifactually inflates
4

Similar Publications

: An evolving THC product marketplace is diffusing through college campuses. It is essential to understand college students' THC knowledge, attitudes, practices and product packaging perceptions to identify campus health education and messaging strategies. : Participants were 30 undergraduate college students at a large-midwestern, public university.

View Article and Find Full Text PDF

Sparse Learning Enabled by Constraints on Connectivity and Function.

Phys Rev Lett

August 2025

Northeastern University, Department of Physics, Center for Theoretical Biological Physics, Boston, Massachusetts 02115, USA.

Sparse connectivity is a hallmark of the brain and a desired property of artificial neural networks. It promotes energy efficiency, simplifies training, and enhances the robustness of network function. Thus, a detailed understanding of how to achieve sparsity without jeopardizing network performance is beneficial for neuroscience, deep learning, and neuromorphic computing applications.

View Article and Find Full Text PDF

Background: Originally adapted from a paper-based guide for skin-related neglected tropical diseases (NTDs), version 3.0.0 of the World Health Organization (WHO) SkinNTDs app aims to strengthen disease surveillance and frontline health worker capacity in NTD-endemic settings.

View Article and Find Full Text PDF

The locus coeruleus-norepinephrine (LC-NE) system regulates arousal and awakening; however, it remains unclear whether the LC does this in a global or circuit-specific manner. We hypothesized that sensory-evoked awakenings are predominantly regulated by specific LC-NE efferent pathways. Anatomical, physiological, and functional modularities of LC-NE pathways involving the mouse basal forebrain (BF) and pontine reticular nucleus (PRN) were tested.

View Article and Find Full Text PDF