A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Influence of natural additives on the properties of a milk-based compostable bioplastic. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ongoing revolution in the plastic sector is the use of renewable and compostable materials obtained from biomass. However, their mechanical strength and thermal stability are generally not sufficient for practical applications. This study investigates the influence of natural additives on the physical-mechanical properties of a new biobased compostable bioplastic, SP-Milk®, produced from milk scraps. To provide this matrix the appropriate mechanical and thermal properties for daily use while leaving its compostability unchanged, the effect of incorporating vegetal fibres and organic particulates into the bulk bioplastic was investigated. Mechanical tests showed that fibres with a length of 2 mm are capable of increasing ductility by up to 97% compared with the original matrix, whereas fibres with a length of 10 mm led to a more effective reinforcement due to the residual resistance effect, increasing the final compressive strain from 20% (original matrix) to 70.9%. The addition of particulate yielded a harder and more resistant material, and the elastic modulus increased by 21%, although with loss of ductility, compared to SP-Milk® alone. The combination of fibres and particles resulted in the preservation of the positive effects of both components, showing a higher elastic modulus (240 ± 20 MPa, compared to 199 ± 12 MPa for the matrix), higher ductility (+50%) and higher strain at failure (+30%), compared with the matrix. Excellent compatibility between the polymeric matrix and both the fibres and the granules was confirmed using scanning electron microscopy. The thermal analysis demonstrated improved thermal stability particularly because of the effect of the combination of granules and fibres. The results validate that natural reinforcement agents are effective and ecologically advantageous.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184369PMC
http://dx.doi.org/10.1039/d4ra02291bDOI Listing

Publication Analysis

Top Keywords

influence natural
8
natural additives
8
compostable bioplastic
8
thermal stability
8
fibres length
8
original matrix
8
matrix fibres
8
elastic modulus
8
matrix
6
fibres
6

Similar Publications