Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Coordinated assembly of individual components into higher-order structures is a defining theme in biology, but underlying principles are not well-understood. In neurons, α/β spectrins, adducin, and actinfilaments assemble into a lattice wrapping underneath the axonal plasma membrane, but mechanistic events leading to this periodic axonal structure (PAS) are unclear. Visualizing PAS components in axons as they develop, we found focal patches in distal axons containing spectrins and adducin (but sparse actin filaments) with biophysical properties reminiscent of biomolecular condensation. Overexpressing spectrin-repeats - constituents of α/β-spectrins - in heterologous cells triggered condensate formation, and preventing association of βII-spectrin with actin-filaments/membranes also facilitated condensation. Finally, overexpressing condensate-triggering spectrin repeats in neurons before PAS establishment disrupted the lattice, presumably by competing with innate assembly, supporting a functional role for biomolecular condensation. We propose a condensation-assembly model where PAS components form focal phase-separated condensates that eventually unfurl into a stable lattice-structure by associating with subplasmalemmal actin. By providing local 'depots' of assembly parts, biomolecular condensation may play a wider role in the construction of intricate cytoskeletal structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185721 | PMC |
http://dx.doi.org/10.1101/2024.06.05.597638 | DOI Listing |