Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Despite widespread use of intensity zones to quantify external load variables in basketball research, the consistency in identifying zones and accompanying intensity thresholds using predominant monitoring approaches in training and games remains unclear.
Objectives: The purpose of this work was to examine the external load intensity zones and thresholds adopted across basketball studies using video-based time-motion analysis (TMA), microsensors, and local positioning systems (LPS).
Methods: PubMed, MEDLINE, and SPORTDiscus databases were searched from inception until 31 January 2023 for studies using intensity zones to quantify external load during basketball training sessions or games. Studies were excluded if they examined players participating in recreational or wheelchair basketball, were reviews or meta-analyses, or utilized monitoring approaches other than video-based TMA, microsensors, or LPS.
Results: Following screening, 86 studies were included. Video-based TMA studies consistently classified jogging, running, sprinting, and jumping as intensity zones, but demonstrated considerable variation in classifying low-intensity (standing and walking) and basketball-specific activities. Microsensor studies mostly utilized a single, and rather consistent, threshold to identify only high-intensity activities (> 3.5 m·s for accelerations, decelerations, and changes-in-direction or > 40 cm for jumps), not separately quantifying lower intensity zones. Similarly, LPS studies predominantly quantified only high-intensity activities in a relatively consistent manner for speed (> 18.0 m·s) and acceleration/deceleration zones (> 2.0 m·s); however, the thresholds adopted for various intensity zones differed greatly to those used in TMA and microsensor research.
Conclusions: Notable inconsistencies were mostly evident for low-intensity activities, basketball-specific activities, and between the different monitoring approaches. Accordingly, we recommend further research to inform the development of consensus guidelines outlining suitable approaches when setting external load intensity zones and accompanying thresholds in research and practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467009 | PMC |
http://dx.doi.org/10.1007/s40279-024-02058-5 | DOI Listing |