Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cloning and transfer of long-stranded DNA in the size of a bacterial whole genome has become possible by recent advancements in synthetic biology. For the whole genome cloning and whole genome transplantation, bacteria with small genomes have been mainly used, such as mycoplasmas and related species. The key benefits of whole genome cloning include the effective maintenance and preservation of an organism's complete genome within a yeast host, the capability to modify these genome sequences through yeast-based genetic engineering systems, and the subsequent use of these cloned genomes for further experiments. This approach provides a versatile platform for in-depth genomic studies and applications in synthetic biology. Here, we cloned an entire genome of an insect-associated bacterium, , in yeast. The 1.12 Mbp whole genome was successfully cloned in yeast, and sequences of several clones were confirmed by Illumina sequencing. The cloning efficiency was high, and the clones contained only a few mutations, averaging 1.2 nucleotides per clone with a mutation rate of 4 × 10. The cloned genomes could be distributed and used for further research. This study serves as an initial step in the synthetic biology approach to .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11176537PMC
http://dx.doi.org/10.3389/fmicb.2024.1411609DOI Listing

Publication Analysis

Top Keywords

synthetic biology
12
genome
9
genome yeast
8
genome cloning
8
cloned genomes
8
cloning
5
cloning sequencing
4
sequencing analysis
4
analysis genome
4
yeast
4

Similar Publications

The aim of the study was to reduce the chemical fertilizers with microbial inoculant-rich vermicompost, which enhanced the growth, flowering, and soil health of the tuberose crop. A total of six treatments were applied with reducing doses of synthetic fertilizers under a factorial randomized design and replicated thrice. In this study, vermicompost (VC) made from cow dung and vegetable waste utilizing Eisenia foetida and their mixed biomass were enriched with microbial inoculants and assessed for their impact on microbial and enzymatic populations including urease, acid phosphatase activity and dehydrogenase activity in soil, nutrient availability, and tuberose development and flowering.

View Article and Find Full Text PDF

PERC: a suite of software tools for the curation of cryoEM data with application to simulation, modeling and machine learning.

Acta Crystallogr F Struct Biol Commun

October 2025

Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom.

Ease of access to data, tools and models expedites scientific research. In structural biology there are now numerous open repositories of experimental and simulated data sets. Being able to easily access and utilize these is crucial to allow researchers to make optimal use of their research effort.

View Article and Find Full Text PDF

Controlling the Taxonomic Composition of Biological Information Storage in 16S rRNA.

ACS Synth Biol

September 2025

Department of BioSciences, Rice University, MS-140, 6100 Main Street, Houston, Texas 77005, United States.

Microbes can be programmed to record participation in gene transfer by coding biological-recording devices into mobile DNA. Upon DNA uptake, these devices transcribe a catalytic RNA (cat-RNA) that binds to conserved sequences within ribosomal RNAs (rRNAs) and perform a trans-splicing reaction that adds a barcode to the rRNAs. Existing cat-RNA designs were generated to be broad-host range, providing no control over the organisms that were barcoded.

View Article and Find Full Text PDF

Focus on 2004 to 2024The rediscovery of natural products (NPs) as a critical source of new therapeutics has been greatly advanced by the development of heterologous expression platforms for biosynthetic gene clusters (BGCs). Among these, species have emerged as the most widely used and versatile chassis for expressing complex BGCs from diverse microbial origins. In this review, we provide a comprehensive analysis of over 450 peer-reviewed studies published between 2004 and 2024 that describe the heterologous expression of BGCs in hosts.

View Article and Find Full Text PDF

Engineering Noncanonical Cofactors To Expand Cellular Functions.

ACS Synth Biol

September 2025

Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.

Synthetic biology often employs heterologous enzymatic reactions to reprogram cell metabolism or otherwise introduce novel functions. However, precise control of a particular metabolic pathway can be difficult to achieve because cofactors are shared with endogenous enzymes from a common pool. Recently, the use of noncanonical cofactors (NCCs) has emerged as a promising approach to bypass this problem by isolating desired reactions without the need for a physical barrier.

View Article and Find Full Text PDF