Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: Current findings.

Neurosci Biobehav Rev

Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil. Electronic address:

Published: September 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neubiorev.2024.105771DOI Listing

Publication Analysis

Top Keywords

dopaminergic signaling
12
nucleoside transporters
8
attention deficit
8
deficit hyperactivity
8
hyperactivity disorder
8
signaling
6
adhd
5
dopaminergic
5
adenosinergic system
4
system nucleoside
4

Similar Publications

Fast Scan Cyclic Voltammetry (FSCV) is a widely used electrochemical technique to detect rapid extracellular dopamine transients . It employs carbon fiber microelectrodes (CFMEs), but conventional 7 µm diameter CFMEs often suffer from limited mechanical durability and reduced lifespan, hindering their use in chronic monitoring. To improve mechanical robustness and long-term functionality, we fabricated 30 µm diameter CFMEs and modified their geometry via electrochemical etching to form cone-shaped tips.

View Article and Find Full Text PDF

Purpose: Alcohol use disorder (AUD) and mild traumatic brain injury (mTBI) have a bidirectional, synergistic, and complicated relationship. Although it is difficult to definitively say that mTBI causes AUD, certain biological mechanisms that occur after trauma are also associated with hazardous alcohol use. Hazardous drinking is defined as any quantity or pattern of alcohol consumption that places people at risk for physical and/or psychological harm.

View Article and Find Full Text PDF

Dendritic Cells Induce Clec5a-mediated Immune Modulation in MPTP-induced Parkinson's Disease Mouse Model.

Front Biosci (Landmark Ed)

August 2025

Division of Life Sciences and Department of Life Science, Graduate School, CHA University, 13488 Seongnam-si, Gyeonggi-do, Republic of Korea.

Background: Parkinson's disease (PD) is characterized by a progressive decline in dopaminergic neurons within the substantia nigra (SN). Although its underlying cause has yet to be fully elucidated, accumulating evidence suggests that neuroinflammation contributes substantially to disease development. Treatment strategies targeting neuroinflammation could improve PD outcomes.

View Article and Find Full Text PDF

Functional PET (fPET) identifies stimulation-specific changes of physiological processes, individual molecular connectivity and group-level molecular covariance. Since there is currently no consistent analysis approach available for these techniques, we present a toolbox for unified fPET assessment. The toolbox supports analysis of data obtained with a variety of radiotracers, scanners, experimental protocols, cognitive tasks and species.

View Article and Find Full Text PDF

Swiss-Webster and C57BL/6 mice are differentially sensitive to the stimulant effects of methamphetamine.

Pharmacol Biochem Behav

September 2025

Department of Pharmacology, Toxicology & Neuroscience, School of Graduate Studies, Louisiana State University Health Shreveport - Shreveport, Louisiana, USA; Louisiana Addiction Research Center, Louisiana State University Health Shreveport - Shreveport, Louisiana, USA; Department of Psychiatry and B

Methamphetamine is a highly addictive psychostimulant with significant neurobiological consequences, yet strain-dependent differences in its effects remain poorly understood. This study investigated behavioral and molecular differences in Swiss-Webster and C57BL/6 mice following methamphetamine exposure. Swiss-Webster mice exhibited greater behavioral sensitivity to methamphetamine compared to C57BL/6 mice, as demonstrated by lower peak doses required to elicit locomotor stimulation and conditioned place preference.

View Article and Find Full Text PDF