98%
921
2 minutes
20
Interactions between plants and herbivorous insects are often phylogenetically structured, with closely related insect species using similar sets of species or lineages of plants, while phylogenetically closer plants tend to share high proportions of their herbivore insect species. Notably, these phylogenetic constraints in plant-herbivore interactions tend to be more pronounced among internal plant-feeding herbivores (i.e., endophages) than among external feeders (i.e., exophages). In the context of growing human-induced habitat conversion and the global proliferation of exotic species, it is crucial to understand how ecological networks respond to land-use intensification and the increasing presence of exotic plants. In this study, we analyzed plant-herbivore network data from various locations of the World to ascertain the degree to which land-use intensity and the prevalence of exotic plants induce predictable changes in their network topology - measured by levels of nestedness and modularity - and phylogenetic structures. Additionally, we investigated whether the intimacy of plant-herbivore interactions, contrasting endophagous with exophagous networks, modulate changes in network structure. Our findings reveal that most plant-herbivore networks are characterized by significant phylogenetic and topological structures. However, neither these structures did not show consistent changes in response to increased levels of land-use intensify. On the other hand, for the networks composed of endophagous herbivores, the level of nestedness was higher in the presence of a high proportion of exotic plants. Additionally, for networks of exophagous herbivores, we observed an increase in the phylogenetic structure of interactions due to exotic host dominance. These results underscore the differential impacts of exotic species and land-use intensity on the phylogenetic and topological structures of plant-herbivore networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173949 | DOI Listing |
Am J Bot
September 2025
Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Shandong University of Aeronautics, Binzhou, Shandong, China.
Premise: The diversity-invasibility hypothesis suggests that native plant communities with high species diversity are more resistant to invasions by exotic species compared to those with fewer species. This resistance stems from more complete resource use and stronger biotic interactions in diverse communities, which limit opportunities for invaders to establish. However, this resistance could potentially be weakened by environmental stressors, including elevated tropospheric ozone.
View Article and Find Full Text PDFJ Environ Manage
September 2025
A.P. Leventis Ornithological Research Institute (APLORI), Centre of Excellence, University of Jos Biological Conservatory, P.O.Box 13404, Laminga, Jos, 930001, Plateau State, Nigeria. Electronic address:
Urban green spaces serve as critical refugia for bird conservation in an increasingly urbanized world. To understand how these spaces support avian communities in Afrotropical cities, we investigated bird assemblages across 40 urban green spaces in Jos-Plateau and Abuja-FCT in central Nigeria, covering a total of 91 transects (45.5 km), to examine how green space typologies and attributes influence avian biodiversity.
View Article and Find Full Text PDFBull Entomol Res
September 2025
Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy.
True bugs (Hemiptera: Acanthosomatidae, Coreidae, and Pentatomidae) include harmful crop pests affecting global agriculture, with different species displaying distinct optimal conditions for development and using different habitats. Over a 2-year period, this research investigates how habitat variation and altitude can influence the species composition of true bugs and their egg parasitoids in South Tyrol (North Italy), unveiling different trends in their population and diversity across habitats: apple orchards, urban areas, and forests. A total of 25 true bug species were sampled.
View Article and Find Full Text PDFBiology (Basel)
August 2025
CREA Research Centre for Agriculture and Environment, 40128 Bologna, Italy.
Anthropogenic environments are increasingly recognised for their potential to support pollinator diversity, especially through the strategic selection of ornamental plant species. This study investigated the ecological role of (formerly ) in supporting solitary bees, particularly species of the genus , within urban green spaces in Milan (Italy). Field observations were conducted in both urban and rural sites to assess pollinator visitation rates, bee abundance, and plant traits relevant to nesting and foraging.
View Article and Find Full Text PDFPlants (Basel)
August 2025
Instituto Multidisciplinario de Biología Vegetal (IMBIV, CONICET-UNC), Universidad Nacional de Córdoba (UNC), Córdoba 5000, Córdoba, Argentina.
Kiwifruit () is a globally important crop presenting challenges for ensuring cross-pollination. This study aimed to (1) record the entomological fauna visiting flowers; (2) evaluate the visitation frequency of pollinators; and (3) test the use of lavender extract to enhance cross-pollination by honeybees and assess the impacts on fruit quality. Nine species of floral visitors were recorded as pollinators, although the most frequent were the exotic honeybee () and the native bees and .
View Article and Find Full Text PDF