Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This study aimed to develop an eco-friendly active biogenic nanocomposite film through the complexation of silver nanoparticles (AgNPs), berry wax (BYW), and chitosan (CT) for maintiaing rabbit functional meat freshness. AgNPs were synthesized using Chinese medicinal paeoniaceae petal extract, and they were loaded at various concentrations (0.5 %, 0.75 %, 1.0 %, 1.25 %, and 1.5 % based on CT w/w) into the CT/BYW complex. The AgNPs exhibited an average size of 55 nm and a zeta potential of -26.3 mV with a spherical shape. The particle size and zeta potential of the film dispersions were 370.5-529.5 nm and 40.17-49.345 mV, respectively. FTIR, SEM, and XRD results showed compatibility among AgNPs and CT/BYW structure. The film water vapor permeability and light transparency decreased from 6.5 to 3.5 and 10 to 0.78 %, respectively, while opacity increased from 1.76 to 9.96 % with increasing concentrations of AgNPs. Among them, the film composite CT/BYW/AgNPs had better antioxidant and antibacterial properties, which was then applied for rabbit meat preservation at 4 °C for 16 days of storage. CT/BYW/AgNPs-packed sample had lower values of TVB-N, TBARS, TVC, and pH with greater retention of color properties compared to the control sample, which describes its ability to maintain meat freshness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.133128DOI Listing

Publication Analysis

Top Keywords

active biogenic
8
silver nanoparticles
8
berry wax
8
rabbit meat
8
meat preservation
8
meat freshness
8
zeta potential
8
film
5
agnps
5
development active
4

Similar Publications

Currently, there is an increasing use of whole-genome sequencing (WGS) studies to investigate the molecular taxonomy, metabolic properties, enzyme capabilities, and bioactive substances of lactic acid bacteria (LAB) species. In this study, the genome of strain Pediococcus pentosaceus BBS1 was sequenced using the Illumina HiSeq. 2500 platform to determine its classification, annotate its main features, and evaluate its safety characteristics.

View Article and Find Full Text PDF

, a lactic acid gut bacterium, uses exogenous quinones to facilitate extracellular electron transfer (EET) via type II NADH dehydrogenase (Ndh2). To probe Ndh2 specificity, we designed and evaluated a library of biogenic amine-substituted 1,4-naphthoquinones in an Ndh2-dependent EET assay. Analysis of mediator Ndh2 binding interactions revealed that activity correlates with key binding interactions.

View Article and Find Full Text PDF

Introduction: Manganese-oxidizing bacteria (MOB) play a critical role in converting soluble Mn(II) to insoluble Mn(III/IV) oxides, which have been widely applied for environmental remediation, particularly in heavy metal pollution control. Therefore, the discovery of novel MOB strains is of great significance for advancing pollution mitigation and ecosystem restoration.

Methods: In this study, a manganese-oxidizing bacterial strain was isolated from Mn-contaminated soil near an electroplating factory using selective LB medium supplemented with 10 mmol/L manganese chloride (MnCl), and the Leucoberbelin Blue (LBB) assay was employed to screen and identify strains with strong Mn(II)-oxidation ability.

View Article and Find Full Text PDF

Safety assessment of potential probiotic lactic acid bacteria strains SY21 and SY22.

Food Sci Biotechnol

October 2025

Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120 Republic of Korea.

Unlabelled: SY21 and SY22 exhibit anti-inflammatory activity; however, their safety has not been evaluated. The suitability as probiotic strains were evaluated by using phenotypic and genotypic analyses. Indole production, urease activity, mucin degradation, bile salt hydrolase activity, β-hemolysis, and gelatin liquefaction activity were not found.

View Article and Find Full Text PDF

Social wasps make up a significant part to the diversity of the Hymenoptera order, one of the most varied insect groups. Beyond their ecological importance, these insects use their venom for defense, protecting their colonies. The venom of social wasps are rich in biologically active substances, including biogenic amines, peptides, proteins, enzymes, allergens, and volatile compounds.

View Article and Find Full Text PDF