A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Ab Initio-Based Bond Order Potential for Arsenene Polymorphs Developed via Hierarchical Reinforcement Learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Arsenene, a less-explored two-dimensional material, holds the potential for applications in wearable electronics, memory devices, and quantum systems. This study introduces a bond-order potential model with Tersoff formalism, the ML-Tersoff, which leverages multireward hierarchical reinforcement learning (RL), trained on an ab initio data set. This data set covers a spectrum of properties for arsenene polymorphs, enhancing our understanding of its mechanical and thermal behaviors without the complexities of traditional models requiring multiple parameter sets. Our RL strategy utilizes decision trees coupled with a hierarchical reward strategy to accelerate convergence in high-dimensional continuous search spaces. Unlike the Stillinger-Weber approach, which demands separate formalisms for buckled and puckered forms, the ML-Tersoff model concurrently captures multiple properties of the two polymorphs by effectively representing the local environment, thereby avoiding the need for different atomic types. We apply the ML model to understand the mechanical and thermal properties of the arsenene polymorphs and nanostructures. We observe an inverse relationship between the critical strain and temperature in arsenene. Thermal conductivity calculations in nanosheets show good agreement with ab initio data, reflecting a decrease in thermal conductivity attributable to increased anharmonic effects at higher temperatures. We also apply the model to predict the thermal behavior of arsenene nanotubes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.4c01040DOI Listing

Publication Analysis

Top Keywords

arsenene polymorphs
12
hierarchical reinforcement
8
reinforcement learning
8
initio data
8
data set
8
properties arsenene
8
mechanical thermal
8
apply model
8
thermal conductivity
8
arsenene
6

Similar Publications