Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recent research on few-shot fine-grained image classification (FSFG) has predominantly focused on extracting discriminative features. The limited attention paid to the role of loss functions has resulted in weaker preservation of similarity relationships between query and support instances, thereby potentially limiting the performance of FSFG. In this regard, we analyze the limitations of widely adopted cross-entropy loss and introduce a novel Angular ISotonic (AIS) loss. The AIS loss introduces an angular margin to constrain the prototypes to maintain a certain distance from a pre-set threshold. It guides the model to converge more stably, learn clearer boundaries among highly similar classes, and achieve higher accuracy faster with limited instances. Moreover, to better accommodate the feature requirements of the AIS loss and fully exploit its potential in FSFG, we propose a Multi-Layer Integration (MLI) network that captures object features from multiple perspectives to provide more comprehensive and informative representations of the input images. Extensive experiments demonstrate the effectiveness of our proposed method on four standard fine-grained benchmarks. Codes are available at: https://github.com/Legenddddd/AIS-MLI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2024.3411474 | DOI Listing |