A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Assessing the Utility, Impact, and Adoption Challenges of an Artificial Intelligence-Enabled Prescription Advisory Tool for Type 2 Diabetes Management: Qualitative Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The clinical management of type 2 diabetes mellitus (T2DM) presents a significant challenge due to the constantly evolving clinical practice guidelines and growing array of drug classes available. Evidence suggests that artificial intelligence (AI)-enabled clinical decision support systems (CDSSs) have proven to be effective in assisting clinicians with informed decision-making. Despite the merits of AI-driven CDSSs, a significant research gap exists concerning the early-stage implementation and adoption of AI-enabled CDSSs in T2DM management.

Objective: This study aimed to explore the perspectives of clinicians on the use and impact of the AI-enabled Prescription Advisory (APA) tool, developed using a multi-institution diabetes registry and implemented in specialist endocrinology clinics, and the challenges to its adoption and application.

Methods: We conducted focus group discussions using a semistructured interview guide with purposively selected endocrinologists from a tertiary hospital. The focus group discussions were audio-recorded and transcribed verbatim. Data were thematically analyzed.

Results: A total of 13 clinicians participated in 4 focus group discussions. Our findings suggest that the APA tool offered several useful features to assist clinicians in effectively managing T2DM. Specifically, clinicians viewed the AI-generated medication alterations as a good knowledge resource in supporting the clinician's decision-making on drug modifications at the point of care, particularly for patients with comorbidities. The complication risk prediction was seen as positively impacting patient care by facilitating early doctor-patient communication and initiating prompt clinical responses. However, the interpretability of the risk scores, concerns about overreliance and automation bias, and issues surrounding accountability and liability hindered the adoption of the APA tool in clinical practice.

Conclusions: Although the APA tool holds great potential as a valuable resource for improving patient care, further efforts are required to address clinicians' concerns and improve the tool's acceptance and applicability in relevant contexts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11211700PMC
http://dx.doi.org/10.2196/50939DOI Listing

Publication Analysis

Top Keywords

apa tool
16
focus group
12
group discussions
12
prescription advisory
8
type diabetes
8
patient care
8
tool
5
clinical
5
clinicians
5
assessing utility
4

Similar Publications