98%
921
2 minutes
20
Ultrahigh resolution mass spectrometry (UHRMS) routinely detects and identifies thousands of mass peaks in complex mixtures, such as natural organic matter (NOM) and petroleum. The assignment of several chemically plausible molecular formulas (MFs) for a single accurate mass still poses a major problem for the reliable interpretation of NOM composition in a biogeochemical context. Applying sensible chemical rules for MF validation is often insufficient to eliminate multiple assignments (MultiAs)─especially for mass peaks with low abundance or if ample heteroatoms or isotopes are included - and requires manual inspection or expert judgment. Here, we present a new approach based on mass error distributions for the identification of true and false assignments among MultiAs. To this end, we used the mass error in millidalton (mDa), which was superior to the commonly used relative mass error in ppm. We developed an automatic workflow to group MultiAs based on their shared formula units and Kendrick mass defect values and to evaluate the mass error distribution. In this way, the number of valid assignments of chlorinated disinfection byproducts was increased by 8-fold as compared to only applying Cl/Cl isotope ratio filters. Likewise, phosphorus-containing MFs can be differentiated against chlorine-containing MFs with high confidence. Further, false assignments of highly aromatic sulfur-containing MFs ("black sulfur") to sodium adducts in negative ionization mode can be excluded by applying our approach. Overall, MFs for mass peaks that are close to the detection limit or where naturally occurring isotopes are rare (e.g., N) or absent (e.g., P and F) can now be validated, substantially increasing the reliability of MF assignments and broadening the applicability of UHRMS analysis to even more complex samples and processes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11209664 | PMC |
http://dx.doi.org/10.1021/acs.analchem.4c00489 | DOI Listing |
Phys Rev Lett
August 2025
Johannes Gutenberg-Universität Mainz, PRISMA, +, Cluster of Excellence and Institut für Kernphysik, 55099 Mainz, Germany.
We determine the low-energy constants f_{0}, L_{4}^{r} and L_{5}^{r} of SU(3) chiral perturbation theory from a lattice QCD calculation of the scalar form factors of the pion with fully controlled systematics. Lattice results are computed on a large set of N_{f}=2+1 gauge ensembles covering four lattice spacings a∈[0.049,0.
View Article and Find Full Text PDFRev Sci Instrum
September 2025
LAPLACE, Université de Toulouse, CNRS, INPT, UPS, 118 route de Narbonne, 31062 Toulouse, France.
A two-axis thrust stand is developed and validated experimentally, enabling direct and simultaneous measurements of two components of the thrust vector of an electric thruster. It is made of two piled-up single-axis stages, each having a hanging deformable parallelogram geometry. A mass deposition calibration method is used to calibrate the thrust stand, including crosstalk between axes.
View Article and Find Full Text PDFSleep
September 2025
Center for Sleep Medicine, Hospices Civils de Lyon, Lyon 1 University, Lyon, F-69000, France.
Current treatments for narcolepsy type 1 (NT1) have little impact on psychiatric, cognitive and metabolic comorbidities. Here, we evaluated the feasibility, safety and efficacy of a prospective Exercise Training (ET) program on sleep-related symptoms and comorbidities in NT1. Sedentary adult with NT1 participated in a 6-week supervised ET program followed by a 18-week self-directed program.
View Article and Find Full Text PDFNat Metab
September 2025
Cellular and Molecular Physiology Department, Yale School of Medicine, New Haven, CT, USA.
The essential cofactor coenzyme A (CoASH) and its thioester derivatives (acyl-CoAs) have pivotal roles in cellular metabolism. However, the mechanism by which different acyl-CoAs are accurately partitioned into different subcellular compartments to support site-specific reactions, and the physiological impact of such compartmentalization, remain poorly understood. Here, we report an optimized liquid chromatography-mass spectrometry-based pan-chain acyl-CoA extraction and profiling method that enables a robust detection of 33 cellular and 23 mitochondrial acyl-CoAs from cultured human cells.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Ansys Inc., Houston, TX 77094, USA.
Introduction: Benchtop and animal models have traditionally been used to study the propagation of Onyx Liquid Embolic Systems (Onyx) used in the treatment of brain arteriovenous malformations (AVM). However, such models are costly, do not provide sufficient detail to elucidate how variations in Onyx viscosity alter flow dynamics, and rely on some trial-and-error, resulting in elongated timelines for product development.
Objectives: The goal of this study was to leverage Computational Fluid Dynamics (CFD) simulations to predict the behavior of different Onyx formulations.