Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aerosol transmission remains a major challenge for control of respiratory viruses, particularly those causing recurrent epidemics, like influenza A virus (IAV). These viruses are rarely expelled alone, but instead are embedded in a consortium of microorganisms that populate the respiratory tract. The impact of microbial communities and inter-pathogen interactions upon stability of transmitted viruses is well-characterized for enteric pathogens, but is under-studied in the respiratory niche. Here, we assessed whether the presence of five different species of commensal respiratory bacteria could influence the persistence of IAV within phosphate-buffered saline and artificial saliva droplets deposited on surfaces at typical indoor air humidity, and within airborne aerosol particles. In droplets, presence of individual species or a mixed bacterial community resulted in 10- to 100-fold more infectious IAV remaining after 1 h, due to bacterial-mediated flattening of drying droplets and early efflorescence. Even when no efflorescence occurred at high humidity or the bacteria-induced changes in droplet morphology were abolished by aerosolization instead of deposition on a well plate, the bacteria remained protective. and were the most stabilizing compared to other commensals at equivalent density, indicating the composition of an individual's respiratory microbiota is a previously unconsidered factor influencing expelled virus persistence.IMPORTANCEIt is known that respiratory infections such as coronavirus disease 2019 and influenza are transmitted by release of virus-containing aerosols and larger droplets by an infected host. The survival time of viruses expelled into the environment can vary depending on temperature, room air humidity, UV exposure, air composition, and suspending fluid. However, few studies consider the fact that respiratory viruses are not alone in the respiratory tract-we are constantly colonized by a plethora of bacteria in our noses, mouth, and lower respiratory system. In the gut, enteric viruses are known to be stabilized against inactivation and environmental decay by gut bacteria. Despite the presence of a similarly complex bacterial microbiota in the respiratory tract, few studies have investigated whether viral stabilization could occur in this niche. Here, we address this question by investigating influenza A virus stabilization by a range of commensal bacteria in systems representing respiratory aerosols and droplets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11264603PMC
http://dx.doi.org/10.1128/jvi.00409-24DOI Listing

Publication Analysis

Top Keywords

influenza virus
12
respiratory
12
commensal respiratory
8
respiratory bacteria
8
respiratory viruses
8
respiratory tract
8
air humidity
8
droplets
6
bacteria
6
viruses
6

Similar Publications

Introduction: Chemotherapy remains essential despite advances in immunotherapy, radiotherapy, and biological therapy. However, the wide range of chemical drugs is limited by a narrow therapeutic index, low selectivity, and the development of resistance. In this regard, new high-efficiency drugs are in extremely high demand.

View Article and Find Full Text PDF

H5N1 influenza virus-like particles based on BEVS induce robust functional antibodies and immune responses.

Virology

August 2025

Changchun Institute of Biological Products Co.,Ltd, Changchun, China; State Key Laboratory of Novel Vaccines for Emerging Infectious Diseases, China National Biotec Group Company Limited, Beijing, China. Electronic address:

Avian influenza virus infections pose a potential pandemic threat. The currently licensed vaccines have inherent limitations, emphasizing the urgent need for improved influenza vaccines. Here, we developed a novel hemagglutinin (HA) virus-like particle (VLP) vaccine candidate through the baculovirus expression vector system (BEVS).

View Article and Find Full Text PDF

Background: Respiratory syncytial virus (RSV) is recognized as the primary cause of hospitalizations among children with lower respiratory tract infections in developed countries, placing a significant burden on both patients and healthcare systems. The efficacy, safety, and immunogenicity of maternal vaccination with the novel RSVpreF vaccine have been evaluated in a Phase III clinical trial, showing a decreased risk of severe infection in infants. Our study assesses the cost-effectiveness of the RSVpreF vaccine and seasonal variation of costs in a Norwegian setting.

View Article and Find Full Text PDF

Mapping the infectious burden in VEXAS syndrome: a systematic review and rationale for prevention.

Lancet Rheumatol

September 2025

Service de Médecine interne et polyvalente, Centre Hospitalier du Haut-Anjou, Château-Gontier, France; Université d'Angers, Inserm, CNRS, MITOVASC, Equipe MitoLab, SFR ICAT, F-49000 Angers, France. Electronic address:

Infections are increasingly recognised as a major cause of morbidity and mortality in patients with vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic (VEXAS) syndrome. We conducted a systematic review to characterise the infectious burden of VEXAS syndrome and propose preventive strategies. We included 57 studies (813 patients) showing that infections in patients with VEXAS syndrome were frequent, severe in 40-60% of cases, and fatal in 6-15% of cases.

View Article and Find Full Text PDF

Interferon-γ receptor signaling is critical for balanced immune activation and protection against influenza after vaccination.

Virology

September 2025

Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA. Electronic address:

To better understand the contribution of interferon-γ (IFN-γ) receptor signaling to vaccine-induced immunity, we employed A129 (IFN-α/β receptor-deficient) and AG129 (IFN-α/β/γ receptor-deficient) mouse models. AG129 mice induced comparable levels of virus-specific IgG after vaccination with influenza virus H5 hemagglutinin (HA) virus-like particles (VLPs). Vaccinated AG129 mice with HA VLPs exhibited impaired Th1-immune responses, lower hemagglutination inhibition (HAI) titers, increased susceptibility to virus infection, and lower survival rates following influenza virus (H5N1) challenge than vaccinated A129 mice.

View Article and Find Full Text PDF