Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nociceptive pain perception is a remarkable capability of organisms to be aware of environmental changes and avoid injury, which can be accomplished by specialized pain receptors known as nociceptors with 4 vital properties including threshold, no adaptation, relaxation, and sensitization. Bioinspired systems designed using artificial devices are investigated to imitate the efficacy and functionality of nociceptive transmission. Here, an artificial pain-perceptual system (APPS) with a homogeneous material and heterogeneous integration is proposed to emulate the behavior of fast and slow pain in nociceptive transmission. Retention-differentiated poly[2-methoxy-5-(3,7-dimethyoctyoxyl)-1,4-phenylenevinylene] (MDMO-PPV) memristors with film thicknesses of 160 and 80 nm are manufactured and adopted as A-δ and C nerve fibers of nociceptor conduits, respectively. Additionally, a nociceptor mimic, the ruthenium nanoparticles (Ru-NPs)-doped MDMO-PPV piezoresistive pressure sensor, is fabricated with a noxiously stimulated threshold of 150 kPa. Under the application of pricking and dull noxious stimuli, the current flows predominantly through the memristor to mimic the behavior of fast and slow pain, respectively, in nociceptive transmission with postsynaptic potentiation properties, which is analogous to biological pain perception. The proposed APPS can provide potential advancements in establishing the nervous system, thus enabling the successful development of next-generation neurorobotics, neuroprosthetics, and precision medicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202311040 | DOI Listing |