Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Hierarchical supramolecular systems, characterized by nanoscale sensitivity and macroscopic tangible changes, offer promising perspectives for the design of remotely controllable, rapid, and precise actuation materials, serving as a potential substitution for non-intelligent and complex actuation switches. Herein, we reported on the disassembly of orderly and rigid starch helical covalent structures, and their subsequent reassembly into a hierarchical supramolecular gel composed of nanocluster aggregates, integrating supramolecular interactions of three different scales. The incorporation of photo-sensitive FeTA, a complex of trivalent iron ions and tannic acid, significantly enhances the photo-responsive strain capacity of the hierarchical supramolecular gel. The supramolecular gel exhibits its features in a rapid light-responsive rate of hardness and viscosity, enabling the actuation of objects within 22 s under light exposure when employed as a remote actuation switch. Meanwhile, this actuation mechanism of the hierarchical supramolecular gel also has a promising perspective in precise control, identifying and actuating one of the two objects in distances of 0.8 mm even smaller scales. Our work provides a reliable reference for replacing complex actuation switches with intelligent materials for remote, rapid, and accurate actuation, and offers valuable insights for actuation in harsh and vacuum outdoor environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.122314 | DOI Listing |