Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In many coastal cities around the world, continuing water degradation threatens the living environment of humans and aquatic organisms. To assess and control the water pollution situation, this study estimated the Biochemical Oxygen Demand (BOD) concentration of Hong Kong's marine waters using remote sensing and an improved machine learning (ML) method. The scheme was derived from four ML algorithms (RBF, SVR, RF, XGB) and calibrated using a large amount (N > 1000) of in-situ BOD data. Based on labeled datasets with different preprocessing, i.e., the original BOD, the log(BOD), and label distribution smoothing (LDS), three types of models were trained and evaluated. The results highlight the superior potential of the LDS-based model to improve BOD estimate by dealing with imbalanced training dataset. Additionally, XGB and RF outperformed RBF and SVR when the model was developed using log(BOD) or LDS(BOD). Over two decades, the BOD concentration of Hong Kong marine waters in the autumn (Sep. to Nov.) shows a downward trend, with significant decreases in Deep Bay, Western Buffer, Victoria Harbour, Eastern Buffer, Junk Bay, Port Shelter, and the Tolo Harbour and Channel. Principal component analysis revealed that nutrient levels emerged as the predominant factor in Victoria Harbour and the interior of Deep Bay, while chlorophyll-related and physical parameters were dominant in Southern, Mirs Bay, Northwestern, and the outlet of Deep Bay. LDS provides a new perspective to improve ML-based water quality estimation by alleviating the imbalance in the labeled dataset. Overall, the remotely sensed BOD can offer insight into the spatial-temporal distribution of organic matter in Hong Kong coastal waters and valuable guidance for the pollution control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173748 | DOI Listing |