Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cluster analysis, a pivotal step in single-cell sequencing data analysis, presents substantial opportunities to effectively unveil the molecular mechanisms underlying cellular heterogeneity and intercellular phenotypic variations. However, the inherent imperfections arise as different clustering algorithms yield diverse estimates of cluster numbers and cluster assignments. This study introduces Single Cell Consistent Clustering based on Spectral Matrix Decomposition (SCSMD), a comprehensive clustering approach that integrates the strengths of multiple methods to determine the optimal clustering scheme. Testing the performance of SCSMD across different distances and employing the bespoke evaluation metric, the methodological selection undergoes validation to ensure the optimal efficacy of the SCSMD. A consistent clustering test is conducted on 15 authentic scRNA-seq datasets. The application of SCSMD to human embryonic stem cell scRNA-seq data successfully identifies known cell types and delineates their developmental trajectories. Similarly, when applied to glioblastoma cells, SCSMD accurately detects pre-existing cell types and provides finer sub-division within one of the original clusters. The results affirm the robust performance of our SCSMD method in terms of both the number of clusters and cluster assignments. Moreover, we have broadened the application scope of SCSMD to encompass larger datasets, thereby furnishing additional evidence of its superiority. The findings suggest that SCSMD is poised for application to additional scRNA-seq datasets and for further downstream analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11163303 | PMC |
http://dx.doi.org/10.1093/bib/bbae273 | DOI Listing |