A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Endogenous tau released from human cultures by neuronal activity is phosphorylated at multiple sites. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tau is an intracellular protein but also known to be released into the extracellular fluid. Tau release mechanisms have drawn intense attention as these are known to play a key role in Alzheimer's disease (AD) pathology. However, tau can also be released under physiological conditions although its physiological function and release mechanisms have been poorly characterized, especially in human neuronal cells. We investigated endogenous tau release in VM, a human neuroprogenitor cell line, under physiological conditions and found that tau is spontaneously released from cells. To study activity-dependent release of endogenous tau, human culture was stimulated by 100μM AMPA or 50mM KCl for one-hour, tau was actively released to the culture medium. The released tau was highly phosphorylated at nine phosphorylation sites (pSites) detected by phospho-specific tau antibodies including AT270 (T175/T181), AT8 (S202/T205), AT100 (T212/S214), AT180 (T231), and PHF-1 (S396/S404), showing that these pSites are important for activity-dependent tau release from human VM. Intracellular tau showed various phosphorylation status across these sites, with AT270 and PHF-1 highly phosphorylated while AT8 and AT180 were minimally phosphorylated, suggesting that AT8 and AT180 pSites exhibit a propensity for secretion rather than being retained intracellularly. This activity-dependent tau release was significantly decreased by inhibition of GSK-3β, demonstrating that GSK3β-dependent phosphorylation of tau plays an important role in its release by neuronal activity. In this study, we showed that VM serves as a valuable model for studying endogenous physiological tau release. Further, model can be also used to study pathological release of human tau that will contribute to our understanding of the progression of AD and related dementias.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11160771PMC
http://dx.doi.org/10.1101/2024.06.02.597022DOI Listing

Publication Analysis

Top Keywords

tau release
20
tau
15
endogenous tau
12
release human
12
release
9
tau released
8
neuronal activity
8
release mechanisms
8
physiological conditions
8
highly phosphorylated
8

Similar Publications