98%
921
2 minutes
20
Cell volume and shape changes play a pivotal role in cellular mechanotransduction, governing cellular responses to external loading. Understanding the dynamics of cell behavior under loading conditions is essential to elucidate cell adaptation mechanisms in physiological and pathological contexts. In this study, we investigated the effects of dynamic cyclic compression loading on cell volume and shape changes, comparing them with static conditions. Using a custom-designed platform which allowed for simultaneous loading and imaging of cartilage tissue, tissues were subjected to 100 cycles of mechanical loading while measuring cell volume and shape alterations during the unloading phase at specific time points. The findings revealed a transient decrease in cell volume (13%) during the early cycles, followed by a gradual recovery to baseline levels after approximately 20 cycles, despite the cartilage tissue not being fully recovered at the unloading phase. This observed pattern indicates a temporal cell volume response that may be associated with cellular adaptation to the mechanical stimulus through mechanisms related to active cell volume regulation. Additionally, this study demonstrated that cell volume and shape responses during dynamic loading were significantly distinct from those observed under static conditions. Such findings suggest that cells in their natural tissue environment perceive and respond differently to dynamic compared to static mechanical cues, highlighting the significance of considering dynamic loading environments in studies related to cellular mechanics. Overall, this research contributes to the broader understanding of cellular behavior under mechanical stimuli, providing valuable insights into their ability to adapt to dynamic mechanical loading.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiomech.2024.112179 | DOI Listing |
Neurol Neuroimmunol Neuroinflamm
November 2025
Departments of Neurology and Ophthalmology, NYU Grossman School of Medicine, NY; and.
Background And Objectives: While reductions in optical coherence tomography (OCT) pRNFL and ganglion cell-inner plexiform layer thicknesses have been shown to be associated with brain atrophy in adult-onset MS (AOMS) cohorts, the relationship between OCT and brain MRI measures is less established in pediatric-onset MS (POMS). Our aim was to examine the associations of OCT measures with volumetric MRI in a cohort of patients with POMS to determine whether OCT measures reflect CNS neurodegeneration in this patient population, as is seen in AOMS cohorts.
Methods: This was a cross-sectional study with retrospective ascertainment of patients with POMS evaluated at a single center with expertise in POMS and neuro-ophthalmology.
Blood Adv
September 2025
Alfred Health and Monash University, East Melbourne, Australia.
Zanubrutinib is a next-generation covalent Bruton tyrosine kinase (BTK) inhibitor designed to provide complete and sustained BTK occupancy for efficacy across disease-relevant tissues, with fewer off-target adverse events (AEs) than other covalent BTK inhibitors. In the phase 3 ASPEN study (BGB-3111-302), comparable efficacy and a favorable safety profile versus ibrutinib were demonstrated in patients with MYD88-mutated Waldenström macroglobulinemia (WM), leading to approval of zanubrutinib for patients with WM. BGB-3111-LTE1 (LTE1) is a long-term extension study to which eligible patients, including patients from comparator treatment arms, could enroll following participation in various parent studies of zanubrutinib to treat B-cell malignancies.
View Article and Find Full Text PDFJ Pediatr Hematol Oncol
September 2025
Nuclear Medicine, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
Pediatric pancreatic neuroblastoma is a rare cancer in children, with only limited cases available in the literature. We report a case of a 4-year-old girl diagnosed with high-risk pancreatic neuroblastoma. The girl was treated with induction chemotherapy followed by autologous stem cell transplant and maintenance with 13-cis-retinoic acid.
View Article and Find Full Text PDFBJS Open
September 2025
Digestive Surgery and Transplantation Department, Toulouse University Hospital Centre, Toulouse, France.
Background: Intraoperative autotransfusion remains underutilized in high-risk haemorrhagic oncological procedures, particularly in liver transplantation for hepatocellular carcinoma. This is because of the theoretical risk of tumour cell reinfusion and dissemination, potentially leading to reduced recurrence-free survival. The aim of this study was to evaluate the impact of intraoperative autotransfusion on recurrence-free survival during liver transplantation for hepatocellular carcinoma.
View Article and Find Full Text PDFJ Org Chem
September 2025
School of Chemical and Biopharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, Dublin D07 EWV4, Ireland.
A series of unsymmetrically substituted BODIPY dyes featuring fused benzo- or naphtho-fragments on one pyrrolic unit were synthesized from the corresponding pyrrolic precursors. The synthetic route was optimized using a modular approach based on the condensation of formylpyrroles with alkylpyrroles, enabling the identification of precursor combinations that minimize byproduct formation and improve preparative yields. The resulting benzo- and naphtho-fused BODIPYs display intense fluorescence in the red region, with emission maxima spanning 590-680 nm and fluorescence quantum yields ranging from 0.
View Article and Find Full Text PDF