A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Enhancing Clinical Decision Support in Nephrology: Addressing Algorithmic Bias Through Artificial Intelligence Governance. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There has been a steady rise in the use of clinical decision support (CDS) tools to guide nephrology as well as general clinical care. Through guidance set by federal agencies and concerns raised by clinical investigators, there has been an equal rise in understanding whether such tools exhibit algorithmic bias leading to unfairness. This has spurred the more fundamental question of whether sensitive variables such as race should be included in CDS tools. In order to properly answer this question, it is necessary to understand how algorithmic bias arises. We break down 3 sources of bias encountered when using electronic health record data to develop CDS tools: (1) use of proxy variables, (2) observability concerns and (3) underlying heterogeneity. We discuss how answering the question of whether to include sensitive variables like race often hinges more on qualitative considerations than on quantitative analysis, dependent on the function that the sensitive variable serves. Based on our experience with our own institution's CDS governance group, we show how health system-based governance committees play a central role in guiding these difficult and important considerations. Ultimately, our goal is to foster a community practice of model development and governance teams that emphasizes consciousness about sensitive variables and prioritizes equity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585446PMC
http://dx.doi.org/10.1053/j.ajkd.2024.04.008DOI Listing

Publication Analysis

Top Keywords

algorithmic bias
12
cds tools
12
sensitive variables
12
clinical decision
8
decision support
8
variables race
8
enhancing clinical
4
support nephrology
4
nephrology addressing
4
addressing algorithmic
4

Similar Publications