Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes by using time-of-flight photon information after multiple diffuse reflections. The under-sampled scanning data can facilitate fast imaging. However, the resulting reconstruction problem becomes a serious ill-posed inverse problem, the solution of which is highly likely to be degraded due to noises and distortions. In this paper, we propose novel NLOS reconstruction models based on curvature regularization, i.e., the object-domain curvature regularization model and the dual (signal and object)-domain curvature regularization model. In what follows, we develop efficient optimization algorithms relying on the alternating direction method of multipliers (ADMM) with the backtracking stepsize rule, for which all solvers can be implemented on GPUs. We evaluate the proposed algorithms on both synthetic and real datasets, which achieve state-of-the-art performance, especially in the compressed sensing setting. Based on GPU computing, our algorithm is the most effective among iterative methods, balancing reconstruction quality and computational time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2024.3409414 | DOI Listing |