Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Survival prediction is one of the crucial goals in precision medicine, as accurate survival assessment can aid physicians in selecting appropriate treatment for individual patients. To achieve this aim, extensive data must be utilized to train the prediction model and prevent overfitting. However, the collection of patient data for disease prediction is challenging due to potential variations in data sources across institutions and concerns regarding privacy and ownership issues in data sharing. To facilitate the integration of cancer data from different institutions without violating privacy laws, we developed a federated learning-based data integration framework called AdFed, which can be used to evaluate patients' survival while considering the privacy protection problem by utilizing the decentralized federated learning technology and regularization method.

Results: AdFed was tested on different cancer datasets that contain the patients' information from different institutions. The experimental results show that AdFed using distributed data can achieve better performance in cancer survival prediction (AUC = 0.605) than the compared federated-learning-based methods (average AUC = 0.554). Additionally, to assess the biological interpretability of our method, in the case study we list 10 identified genes related to liver cancer selected by AdFed, among which 5 genes have been proved by literature review.

Conclusions: The results indicate that AdFed outperforms better than other federated-learning-based methods, and the interpretable algorithm can select biologically significant genes and pathways while ensuring the confidentiality and integrity of data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11153246PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e31873DOI Listing

Publication Analysis

Top Keywords

survival prediction
12
decentralized federated
8
federated learning-based
8
cancer survival
8
privacy protection
8
data
8
federated-learning-based methods
8
cancer
5
survival
5
prediction
5

Similar Publications

Objectives: The risk of major venous thromboembolism (VTE) among patients with COVID-19 is high but varies with disease severity. Estimate the incidence of lower extremity deep venous thrombosis (DVT) in critically ill hospitalized patients with COVID-19, validate the Wells score for DVT diagnosis, and determine patients' prognosis.

Methods: This was an observational follow-up study in the context of the diagnosis and prognosis of DVT.

View Article and Find Full Text PDF

Objective: Anoikis is an anchorage-dependent programmed cell death implicated in multiple pathological processes of cancers; however, the prognostic value of anoikis-related genes (ANRGs) in hepatocellular carcinoma (HCC) remains unclear. Our study aims to develop an ANRGs-based prediction model to improve prognostic assessment in HCC patients.

Methods: The RNA-seq profile was performed to estimate the expression of ANRGs in HCC patients.

View Article and Find Full Text PDF

Using molecular methods to diagnose, classify, and treat neonatal sepsis: a scoping review.

Front Pediatr

August 2025

Department of Neonatal Research, Inova Health Services, Falls Church, VA, United States.

Introduction: Neonatal sepsis is a dysregulated immune response to bloodstream infection causing serious disease and death. Our review seeks to integrate the knowledge gained from studies of multiple molecular methods- such as genomics, metabolomics, transcriptomics, and the gut microbiome- in the setting of neonatal sepsis that may improve the diagnosis, classification, and treatment of the disease. Sepsis claims over 200,000 lives annually worldwide and remains a top 10 cause of infant mortality in the US.

View Article and Find Full Text PDF

Background: The objective of this study is to investigate the predictive role of O6-methylguanine-DNA methyltransferase (MGMT) and isocitrate dehydrogenase (IDH) status on the efficacy of bevacizumab (BEV) in high-grade glioma (HGG), while excluding the interference of chemotherapy agents.

Methods: A retrospective, single-center analysis was conducted on 103 patients with HGG who received BEV treatment. The enrolled patients were grouped based on their different biomarker statuses.

View Article and Find Full Text PDF

Background: Tumor deposit (TD) is an independent risk factor associated with recurrence or metastasis for patients with colorectal cancer (CRC). The scenario in which both TD and lymph node metastasis (LNM) are positive is not clearly illustrated by the current TNM staging system. Simply treating one TD as one or two LNMs by a weighting factor is inappropriate.

View Article and Find Full Text PDF