A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Inhibition of Mettl3 ameliorates osteoblastic senescence by mitigating m6A modifications on Slc1a5 via Igf2bp2-dependent mechanisms. | LitMetric

Inhibition of Mettl3 ameliorates osteoblastic senescence by mitigating m6A modifications on Slc1a5 via Igf2bp2-dependent mechanisms.

Biochim Biophys Acta Mol Basis Dis

Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China. Electronic address:

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Age-related osteoporosis is characterized by a marked decrease in the number of osteoblasts, which has been partly attributed to the senescence of cells of the osteoblastic lineage. Epigenetic studies have provided new insights into the mechanisms of current osteoporosis treatments and bone repair pathophysiology. N6-methyladenosine (m6A) is a novel transcript modification that plays a major role in cellular senescence and is essential for skeletal development and internal environmental stability. Bioinformatics analysis revealed that the expression of the m6A reading protein Igf2bp2 was significantly higher in osteoporosis patients. However, the role of Igf2bp2 in osteoblast senescence has not been elucidated. In this study, we found that Igf2bp2 levels are increased in ageing osteoblasts induced by multiple repetition and HO. Increasing Igf2bp2 expression promotes osteoblast senescence by increasing the stability of Slc1a5 mRNA and inhibiting cell cycle progression. Additionally, Mettl3 was identified as Slc1a5 m6A-methylated protein with increased m6A modification. The knockdown of Mettl3 in osteoblasts inhibits the reduction of senescence, whereas the overexpression of Mettl3 promotes the senescence of osteoblasts. We found that administering Cpd-564, a specific inhibitor of Mettl3, induced increased bone mass and decreased bone marrow fat accumulation in aged rats. Notably, in an OVX rat model, Igf2bp2 small interfering RNA delivery also induced an increase in bone mass and decreased fat accumulation in the bone marrow. In conclusion, our study demonstrated that the Mettl3/Igf2bp2-Slc1a5 axis plays a key role in the promotion of osteoblast senescence and age-related bone loss.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2024.167273DOI Listing

Publication Analysis

Top Keywords

osteoblast senescence
12
senescence
8
bone mass
8
mass decreased
8
bone marrow
8
fat accumulation
8
bone
6
igf2bp2
5
inhibition mettl3
4
mettl3 ameliorates
4

Similar Publications