A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A study of criteria for grading follicular lymphoma using a cell type classifier from pathology images based on complementary-label learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We propose a criterion for grading follicular lymphoma that is consistent with the intuitive evaluation, which is conducted by experienced pathologists. A criterion for grading follicular lymphoma is defined by the World Health Organization (WHO) based on the number of centroblasts and centrocytes within the field of view. However, the WHO criterion is not often used in clinical practice because it is impractical for pathologists to visually identify the cell type of each cell and count the number of centroblasts and centrocytes. Hence, based on the widespread use of digital pathology, we make it practical to identify and count the cell type by using image processing and then construct a criterion for grading based on the number of cells. Here, the problem is that labeling the cell type is not easy even for experienced pathologists. To alleviate this problem, we build a new dataset for cell type classification, which contains the pathologists' confusion records during labeling, and we construct the cell type classifier using complementary-label learning from this dataset. Then we propose a criterion based on the composition ratio of cell types that is consistent with the pathologists' grading. Our experiments demonstrate that the classifier can accurately identify cell types and the proposed criterion is more consistent with the pathologists' grading than the current WHO criterion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2024.103663DOI Listing

Publication Analysis

Top Keywords

cell type
24
grading follicular
12
follicular lymphoma
12
criterion grading
12
cell
9
type classifier
8
complementary-label learning
8
propose criterion
8
experienced pathologists
8
based number
8

Similar Publications