A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A deep learning approach based on graphs to detect plantation lines. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Identifying plantation lines in aerial images of agricultural landscapes is re-quired for many automatic farming processes. Deep learning-based networks are among the most prominent methods to learn such patterns and extract this type of information from diverse imagery conditions. However, even state-of-the-art methods may stumble in complex plantation patterns. Here, we propose a deep learning approach based on graphs to detect plantation lines in UAV-based RGB imagery, presenting a challenging scenario containing spaced plants. The first module of our method extracts a feature map throughout the backbone, which consists of the initial layers of the VGG16. This feature map is used as an input to the Knowledge Estimation Module (KEM), organized in three concatenated branches for detecting 1) the plant positions, 2) the plantation lines, and 3) the displacement vectors between the plants. A graph modeling is applied considering each plant position on the image as vertices, and edges are formed between two vertices (i.e. plants). Finally, the edge is classified as pertaining to a certain plantation line based on three probabilities (higher than 0.5): i) in visual features obtained from the backbone; ii) a chance that the edge pixels belong to a line, from the KEM step; and iii) an alignment of the displacement vectors with the edge, also from the KEM step. Experiments were conducted initially in corn plantations with different growth stages and patterns with aerial RGB imagery to present the advantages of adopting each module. We assessed the generalization capability in the other two cultures (orange and eucalyptus) datasets. The proposed method was compared against state-of-the-art deep learning methods and achieved superior performance with a significant margin considering all three datasets. This approach is useful in extracting lines with spaced plantation patterns and could be implemented in scenarios where plantation gaps occur, generating lines with few-to-no interruptions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152659PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e31730DOI Listing

Publication Analysis

Top Keywords

plantation lines
16
deep learning
12
learning approach
8
approach based
8
based graphs
8
graphs detect
8
plantation
8
detect plantation
8
plantation patterns
8
rgb imagery
8

Similar Publications