A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep learning-based quantification of osteonecrosis using magnetic resonance images in Gaucher disease. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gaucher disease is one of the most common lysosomal storage disorders. Osteonecrosis is a principal clinical manifestation of Gaucher disease and often leads to joint collapse and fractures. T1-weighted (T1w) modality in MRI is widely used to monitor bone involvement in Gaucher disease and to diagnose osteonecrosis. However, objective and quantitative methods for characterizing osteonecrosis are still limited. In this work, we present a deep learning-based quantification approach for the segmentation of osteonecrosis and the extraction of characteristic parameters. We first constructed two independent U-net models to segment the osteonecrosis and bone marrow unaffected by osteonecrosis (UBM) in spine and femur respectively, based on T1w images from patients in the UK national Gaucherite study database. We manually delineated parcellation maps including osteonecrosis and UBM from 364 T1w images (176 for spine, 188 for femur) as the training datasets, and the trained models were subsequently applied to all the 917 T1w images in the database. To quantify the segmentation, we calculated morphological parameters including the volume of osteonecrosis, the volume of UBM, and the fraction of total marrow occupied by osteonecrosis. Then, we examined the correlation between calculated features and the bone marrow burden score for marrow infiltration of the corresponding image, and no strong correlation was found. In addition, we analyzed the influence of splenectomy and the interval between the age at first symptom and the age of onset of treatment on the quantitative measurements of osteonecrosis. The results are consistent with previous studies, showing that prior splenectomy is closely associated with the fractional volume of osteonecrosis, and there is a positive relationship between the duration of untreated disease and the quantifications of osteonecrosis. We propose this technique as an efficient and reliable tool for assessing the extent of osteonecrosis in MR images of patients and improving prediction of clinically important adverse events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2024.117142DOI Listing

Publication Analysis

Top Keywords

gaucher disease
16
osteonecrosis
14
t1w images
12
deep learning-based
8
learning-based quantification
8
bone marrow
8
osteonecrosis ubm
8
images patients
8
volume osteonecrosis
8
images
5

Similar Publications