Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Glycosyltransferases (GTs) are enzymes that transfer sugars to various targets. They play important roles in diverse biological processes, including photosynthesis, cell motility, exopolysaccharide biosynthesis, and lipid metabolism; however, their involvement in regulating carbon metabolism in Synechocystis sp. PCC 6803 has not been reported. We identified a novel GT protein, Slr1064, involved in carbon metabolism. The effect of slr1064 deletion on the growth of Synechocystis cells and functional mechanisms of Slr1064 on carbon metabolism were thoroughly investigated through physiological, biochemistry, proteomic, and metabolic analyses. We found that this GT, which is mainly distributed in the membrane compartment, is essential for the growth of Synechocystis under heterotrophic and mixotrophic conditions, but not under autotrophic conditions. The deletion of slr1064 hampers the turnover rate of Gap2 under mixotrophic conditions and disrupts the assembly of the PRK/GAPDH/CP12 complex under dark culture conditions. Additionally, UDP-GlcNAc, the pivotal metabolite responsible for the O-GlcNAc modification of GAPDH, is downregulated in the Δslr1064. Our work provides new insights into the role of GTs in carbon metabolism in Synechocystis and elucidate the mechanism by which carbon metabolism is regulated in this important model organism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.19872 | DOI Listing |