Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: The geographic patterns of plant diversity in the Qinghai-Tibet Plateau (QTP) have been widely studied, but few studies have focused on wetland plants. This study quantified the geographic patterns of wetland plant diversity in the QTP through a comprehensive analysis of taxonomic, phylogenetic and functional indices.
Methods: Based on a large number of floras, monographs, specimens and field survey data, we constructed a comprehensive dataset of 1,958 wetland plant species in the QTP. Species richness (SR), phylogenetic diversity (PD), functional diversity (FD), net relatedness index (NRI) and net functional relatedness index (NFRI) were used to assess the taxonomic, phylogenetic and functional diversity of wetland plants. We explored the relationships between the diversity indices and four categories of environmental variables (i.e. energy-water, climate seasonality, topography and human activities). We used four diversity indices, namely endemic species richness, weighted endemism, phylogenetic endemism and functional endemism, together with the categorical analysis of neo- and paleo-endemism (CANAPE), to identify the endemic centers of wetland plants in the QTP.
Results: SR, PD and FD were highly consistent and showed a decreasing trend from southeast to northwest, decreasing with increasing elevation. The phylogenetic structure of wetland plant assemblages in most parts of the plateau is mainly clustered. The functional structure of wetland plant assemblages in the southeast of the plateau is overdispersed, while the functional structure of wetland plant assemblages in other areas is clustered. Energy-water and climate seasonality were the two most important categories of variables affecting wetland plant diversity. Environmental variables had a greater effect on the functional structure of wetland plants than on the phylogenetic structure. This study identified seven endemic centres, mainly in the Himalayas and Hengduan Mountains.
Conclusions: Climate and topography are the main factors determining the geographic distribution of wetland plant diversity at large scales. The majority of grid cells in the QTP with significant phylogenetic endemism were mixed and super-endemism. At large scales, compared to climate and topography, human activities may not have a negative impact on wetland plant diversity in the QTP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11145778 | PMC |
http://dx.doi.org/10.1186/s12862-024-02263-w | DOI Listing |