Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early sowing can help summer crops escape drought and can mitigate the impacts of climate change on them. However, it exposes them to cold stress during initial developmental stages, which has both immediate and long-term effects on development and physiology. To understand how early night-chilling stress impacts plant development and yield, we studied the reference sunflower line XRQ under controlled, semi-controlled and field conditions. We performed high-throughput imaging of the whole plant parts and obtained physiological and transcriptomic data from leaves, hypocotyls and roots. We observed morphological reductions in early stages under field and controlled conditions, with a decrease in root development, an increase in reactive oxygen species content in leaves and changes in lipid composition in hypocotyls. A long-term increase in leaf chlorophyll suggests a stress memory mechanism that was supported by transcriptomic induction of histone coding genes. We highlighted DEGs related to cold acclimation such as chaperone, heat shock and late embryogenesis abundant proteins. We identified genes in hypocotyls involved in lipid, cutin, suberin and phenylalanine ammonia lyase biosynthesis and ROS scavenging. This comprehensive study describes new phenotyping methods and candidate genes to understand phenotypic plasticity better in response to chilling and study stress memory in sunflower.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14941DOI Listing

Publication Analysis

Top Keywords

stress memory
8
multi-scale characterisation
4
characterisation cold
4
cold response
4
response reveals
4
reveals long-term
4
long-term impacts
4
impacts cell
4
cell physiology
4
physiology seed
4

Similar Publications

Our Challenges, Our Solutions: The Impact of Autism on Families.

J Autism Dev Disord

September 2025

Institute of Child Protection Studies, Australian Catholic University, 223 Anthill Street, Canberra, 2602, Australia.

This study investigated how autism impacts the relationships between family members and the family unit. It aimed to provide a deeper qualitative understanding by incorporating the perspectives of autistic adolescents and their family members, adding depth to existing quantitative findings. This qualitative study involved audio-recorded semi-structured in-depth interviews with 40 participants, including mothers, fathers, siblings, and autistic adolescents, recruited through autism and disability agencies in Canberra, Australia.

View Article and Find Full Text PDF

Social Buffering of Acute Early Life Stress Sex-Dependently Ameliorates Fear Incubation in Adulthood.

Dev Psychobiol

September 2025

Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA.

Social buffering may reduce the persistent impacts of acute early life stress (aELS) and, thus, has important implications for anxiety- and trauma-related disorders. First, we assessed whether aELS would induce maladaptive fear incubation in adult mice, a PTSD-like phenotype. Overall, animals showed incubation of fear memory in adulthood, independent of aELS condition.

View Article and Find Full Text PDF

Long-duration spaceflight exposes astronauts to various stressors that can alter human physiology, potentially causing immediate and long-term health effects. These stressors can damage biomolecules, cells, tissues, and organs, leading to adverse outcomes. Developing adverse outcome pathways (AOPs) relevant to radiation exposure can guide research priorities and inform risk assessments of future space exploration activities.

View Article and Find Full Text PDF

Ashwagandha (Withania somnifera), a revered herb in Ayurvedic medicine, has gained significant scientific recognition for its potential to promote healthy aging. Traditionally used as a Rasayana or rejuvenator, this potent adaptogen helps the body manage stress and enhance vitality. This review synthesises extensive evidence for its multifaceted anti-aging capabilities, which target key hallmarks of the aging process.

View Article and Find Full Text PDF

Bacteria often encounter physico-chemical stresses that disrupt division, leading to filamentation, where cells elongate without dividing. Although this adaptive response improves survival, it also exposes filaments to significant mechanical strain, raising questions about the mechanochemical feedback in bacterial systems. In this study, we investigate how mechanical strain modifies the geometry of bacterial filaments and influences the Min oscillatory system, a reaction-diffusion network central to division in Escherichia coli.

View Article and Find Full Text PDF