Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Previous study proposed a method to measure linear energy transfer (LET) at specific points using the quenching magnitude of thin film solar cells. This study was conducted to propose a more advanced method for measuring the LET distribution.

Purpose: This study focuses on evaluating the feasibility of estimating the proton LET distribution in proton therapy. The feasibility of measuring the proton LET and dose distribution simultaneously using a single-channel configuration comprising two solar cells with distinct quenching constants is investigated with the objective of paving the way for enhanced proton therapy dosimetry.

Methods: Two solar cells with different quenching constants were used to estimate the proton LET distribution. Detector characteristics (e.g., dose linearity and dose-rate dependency) of the solar cells were evaluated to assess their suitability for dosimetry applications. First, using a reference beam condition, the quenching constants of the two solar cells were determined according to the modified Birks equation. The signal ratios of the two solar cells were then evaluated according to proton LET in relation to the estimated quenching constants. The proton LET distributions of six test beams were obtained by measuring the signal ratios of the two solar cells at each depth, and the ratios were evaluated by comparing them with those calculated by Monte Carlo simulation.

Results: The detector characterization of the two solar cells including dose linearity and dose-rate dependence affirmed their suitability for use in dosimetry applications. The maximum difference between the LET measured using the two solar cells and that calculated by Monte Carlo simulation was 2.34 keV/µm. In the case of the dose distribution measured using the method proposed in this study, the maximum difference between range measured using the proposed method and that measured using a multilayered ionization chamber was 0.7 mm. The expected accuracy of simultaneous LET and dose distribution measurement using the method proposed in this study were estimated to be 3.82%. The signal ratios of the two solar cells, which are related to quenching constants, demonstrated the feasibility of measuring LET and dose distribution simultaneously.

Conclusion: The feasibility of measuring proton LET and dose distribution simultaneously using two solar cells with different quenching constants was demonstrated. Although the method proposed in this study was evaluated using a single channel by varying the measuring depth, the results suggest that the proton LET and dose distribution can be simultaneously measured if the detector is configured in a multichannel form. We believe that the results presented in this study provide the envisioned transition to a multichannel configuration, with the promise of substantially advancing proton therapy's accuracy and efficacy in cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17234DOI Listing

Publication Analysis

Top Keywords

solar cells
48
dose distribution
24
quenching constants
24
solar
12
cells
12
feasibility measuring
12
proton dose
12
distribution simultaneously
12
cells quenching
12
signal ratios
12

Similar Publications

Interstitial Iodine Induced Deep-Trap-Pinning Suppresses Self-Healing at the TiO/Perovskite Interface.

J Phys Chem Lett

September 2025

Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87106, United States.

Defects significantly influence charge transport in CHNHPbI (MAPbI) perovskite solar cells, particularly at interfaces. Using quantum dynamics simulation, we reveal a distinct interstitial iodine (I) defect behavior at different positions in the TiO/MAPbI system. In the perovskite bulk-like region, I exhibits high mobility and dissociates detrimental iodine trimers, facilitating small-to-large polaron transition and promoting shallow trap formation.

View Article and Find Full Text PDF

This study presents a novel carbazole derivative functionalized with hydroxy diphosphonic acid groups (HDPACz) as an efficient annealing-free hole transport layer (HTL) through strong bidentate anchoring to indium tin oxide (ITO). Compared to conventional mono-phosphonic acid counterparts, HDPACz demonstrates superior ITO surface coverage and interfacial dipole, effectively modulating the work function of ITO. Theoretical calculations reveal enhanced adsorption energy (-3.

View Article and Find Full Text PDF

All-small-molecule organic solar cells (ASM-OSCs) with completely definite chemical structure are an ideal model to establish the relationship between molecular structure and device performance via aggregates. The end-capped acceptor unit is of great significance in the regulation of aggregates by essential molecular interactions. However, the successful end-capped acceptor units for small-molecule donors have been rather poorly studied and only focused on the alkyl substituted rhodamine, limiting further development for ASM-OSCs.

View Article and Find Full Text PDF

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF