Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Line attractors are emergent population dynamics hypothesized to encode continuous variables such as head direction and internal states. In mammals, direct evidence of neural implementation of a line attractor has been hindered by the challenge of targeting perturbations to specific neurons within contributing ensembles. Estrogen receptor type 1 (Esr1)-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvl) show line attractor dynamics in male mice during fighting. We hypothesized that these dynamics may encode continuous variation in the intensity of an internal aggressive state. Here, we report that these neurons also show line attractor dynamics in head-fixed mice observing aggression. We exploit this finding to identify and perturb line attractor-contributing neurons using 2-photon calcium imaging and holographic optogenetic perturbations. On-manifold perturbations demonstrate that integration and persistent activity are intrinsic properties of these neurons which drive the system along the line attractor, while transient off-manifold perturbations reveal rapid relaxation back into the attractor. Furthermore, stimulation and imaging reveal selective functional connectivity among attractor-contributing neurons. Intriguingly, individual differences among mice in line attractor stability were correlated with the degree of functional connectivity among contributing neurons. Mechanistic modelling indicates that dense subnetwork connectivity and slow neurotransmission are required to explain our empirical findings. Our work bridges circuit and manifold paradigms, shedding light on the intrinsic and operational dynamics of a behaviorally relevant mammalian line attractor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11142118PMC
http://dx.doi.org/10.1101/2024.05.21.595051DOI Listing

Publication Analysis

Top Keywords

neural implementation
8
attractor
8
encode continuous
8
attractor dynamics
8
attractor-contributing neurons
8
functional connectivity
8
neurons
7
dynamics
5
intrinsic dynamics
4
dynamics neural
4

Similar Publications

Gene mutation estimations via mutual information and Ewens sampling based CNN & machine learning algorithms.

J Appl Stat

February 2025

Department of Mathematics and State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing, People's Republic of China.

We conduct gene mutation rate estimations via developing mutual information and Ewens sampling based convolutional neural network (CNN) and machine learning algorithms. More precisely, we develop a systematic methodology through constructing a CNN. Meanwhile, we develop two machine learning algorithms to study protein production with target gene sequences and protein structures.

View Article and Find Full Text PDF

Motivation: Graph Neural Network (GNN) models have emerged in many fields and notably for biological networks constituted by genes or proteins and their interactions. The majority of enrichment study methods apply over-representation analysis and gene/protein set scores according to the existing overlap between pathways. Such methods neglect knowledges coming from the interactions between the gene/protein sets.

View Article and Find Full Text PDF

Cervical cancer continues to pose a significant global health challenge, highlighting the urgent need for accurate and efficient diagnostic techniques. Recent progress in deep learning has demonstrated considerable potential in improving the detection and classification of cervical cancer. This review presents a thorough analysis of deep learning methods utilized for cervical cancer diagnosis, with an emphasis on critical approaches, evaluation metrics, and the ongoing challenges faced in the field.

View Article and Find Full Text PDF

Background: Currently, midwifery education is confronted with a variety of obstacles, such as inadequate resources and conventional learning methods that are less effective in enhancing the clinical skills of students. Technological advancements and the rapid evolution of maternal and neonatal health services necessitate the transformation of midwifery education to a competency-based curriculum and outcome-based assessment paradigm. Artificial intelligence (AI) and deep learning have the potential to provide adaptive, personalized, and precise learning in this context.

View Article and Find Full Text PDF

Biological nervous systems constitute important sources of inspiration towards computers that are faster, cheaper, and more energy efficient. Neuromorphic disciplines view the brain as a coevolved system, simultaneously optimizing the hardware and the algorithms running on it. There are clear efficiency gains when bringing the computations into a physical substrate, but we presently lack theories to guide efficient implementations.

View Article and Find Full Text PDF