Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Biomarkers of neuronal, glial cells and inflammation in traumatic brain injury (TBI) are available but they do not specifically reflect the damage to synapses, which represent the bulk volume of the brain. Experimental models have demonstrated extensive involvement of synapses in acute TBI, but biomarkers of synaptic damage in human patients have not been explored.

Methods: Single-molecule array assays were used to measure synaptosomal-associated protein-25 (SNAP-25) and visinin-like protein 1 (VILIP-1) (along with neurofilament light chain (NFL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), glial fibrillar acidic protein (GFAP), interleukin-6 (IL-6) and interleukin-8 (IL-8)) in ventricular cerebrospinal fluid (CSF) samples longitudinally acquired during the intensive care unit (ICU) stay of 42 patients with severe TBI or 22 uninjured controls.

Results: CSF levels of SNAP-25 and VILIP-1 are strongly elevated early after severe TBI and decline in the first few days. SNAP-25 and VILIP-1 correlate with inflammatory markers at two distinct timepoints (around D1 and then again at D5) in follow-up. SNAP-25 and VILIP-1 on the day-of-injury have better sensitivity and specificity for unfavourable outcome at 6 months than NFL, UCH-L1 or GFAP. Later elevation of SNAP-25 was associated with poorer outcome.

Conclusion: Synaptic damage markers are acutely elevated in severe TBI and predict long-term outcomes, as well as, or better than, markers of neuroaxonal injury. Synaptic damage correlates with initial injury and with a later phase of secondary inflammatory injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11671962PMC
http://dx.doi.org/10.1136/jnnp-2024-333413DOI Listing

Publication Analysis

Top Keywords

synaptic damage
16
snap-25 vilip-1
16
severe tbi
12
traumatic brain
8
brain injury
8
cerebrospinal fluid
8
snap-25
6
damage
5
injury
5
vilip-1
5

Similar Publications

Comparative Cochlear Transcriptomics in Echolocating Bats and Mouse Reveals Hras as Protector Against Noise-Induced Hearing Loss.

Adv Sci (Weinh)

September 2025

ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Brain Function and Disorders and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, China.

Noise-induced hearing loss (NIHL), caused by irreversible cochlear hair cell (HC) damage, lacks effective therapies due to a limited understanding of endogenous protective mechanisms. The echolocating bats exhibit natural resistance to intense noise, and this suggested novel insights into methods to protect against NIHL. Here, through comparative transcriptomic analysis of noise-exposed cochleae from the eastern bent-winged bats (Miniopterus fuliginosus) and mice, the specific transcriptional dynamics in noise-resistant Miniopterus fuliginosus are revealed, thus highlighting potential mechanisms for preventing cochlear damage that mouse models cannot replicate, with Hras emerging as the most significant hub upregulator.

View Article and Find Full Text PDF

Introduction: The development of new drugs for Alzheimer's disease (AD) remains a major challenge due to the disorder's complex and multifactorial nature. 2'-Fucosyllactose (2'-FL), a human milk oligosaccharide, has demonstrated promising neuroprotective properties. However, its effects on AD-related cognitive decline are not yet fully understood.

View Article and Find Full Text PDF

Aging is associated with cognitive decline, impaired spatial learning, and diminished brain function, significantly impacting quality of life (QoL). Emerging evidence suggests that lifestyle interventions, like omega-3 fatty acids (FAs) intake and regular exercise, can mitigate these age-related deficits by targeting key molecular pathways implicated in oxidative damage, inflammation, and reduced fibrinolytic activity. By doing so, omega-3 FAs, principally eicosapentaenoic acid and docosahexaenoic acid, influence signaling pathways that enhance synaptic plasticity, prevent apoptosis, and promote neurogenesis.

View Article and Find Full Text PDF

RNA interference (RNAi) is an endogenous eukaryote viral defence mechanism representing a unique form of post-transcriptional gene silencing that can be induced via the exongenous application of dsRNA. Due to its high specificity, dsRNA-based biopesticides are being developed to control pest insects. Whilst many lepidopteran species are recalcitrant to RNAi, Tuta absoluta, a polyphagous insect responsible for extensive crop damage, is sensitive.

View Article and Find Full Text PDF

Downregulation of Nrf2 deteriorates cognitive impairment in APP/PS1 mice by inhibiting mitochondrial biogenesis through the PPARγ/PGC1α signaling pathway.

Behav Brain Res

September 2025

Department of neurology, Hebei Medical University Third Hospital, Hebei 050000,Shijiazhuang,China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei 050000,Shijiazhuang,China. Electronic address:

Background: Mitochondrial dysfunction is considered to be an important pathogenesis of cognitive impairment in Alzheimer's disease(AD). Activation of Nrf2 can improve cognitive impairment in AD mice, but the underlying mechanism remains to be elucidated. This research aims to investigate the intrinsic molecular mechanism of Nrf2 in mitochondrial biogenesis related to cognitive impairment of AD mice.

View Article and Find Full Text PDF